早教吧作业答案频道 -->数学-->
平面x/3+y/4+z/5=1和柱面x^2+y^2=1的交线上到平面xoy最短的点(可以用多元微积分的方法做吗
题目详情
平面x/3+y/4+z/5=1和柱面x^2+y^2=1的交线上到平面xoy最短的点(可以用多元微积分的方法做吗
▼优质解答
答案和解析
几何法:
设柱面x^2+y^2=1交xOy平面于圆O:x^2+y^2=1(z=0)
平面x/3+y/4+z/5=1交xOy平面于直线AB:x/3+y/4=1(z=0),A(0,4,0),B(3,0,0)
过O做OC⊥AB于C,交圆O于D
cosCOB=sinABO=4/5
sinCOB=cosABO=3/5
所以D点坐标为(4/5,3/5,0)
所求点即为过D点且垂直于xOy平面的直线与平面x/3+y/4+z/5=1的交点
将D点坐标代入平面方程即得所求点坐标(4/5,3/5,35/12)
解析法:
设该点坐标为(cosa,sina,z),a∈[0,2π)
则(cosa)/3+(sina)/4+z/5=1
z=5-(25/12)((4/5)cosa+(3/5)sina)
=5-(25/12)sin(a+b)
其中b∈(0,π/2),且sinb=4/5,cosb=3/5
当a+b=π/2+2kπ时,k∈Z
z最小为35/12
此时a=π/2-b
cosa=sinb=4/5,sina=cosb=3/5
故所求点坐标为(4/5,3/5,25/12)
设柱面x^2+y^2=1交xOy平面于圆O:x^2+y^2=1(z=0)
平面x/3+y/4+z/5=1交xOy平面于直线AB:x/3+y/4=1(z=0),A(0,4,0),B(3,0,0)
过O做OC⊥AB于C,交圆O于D
cosCOB=sinABO=4/5
sinCOB=cosABO=3/5
所以D点坐标为(4/5,3/5,0)
所求点即为过D点且垂直于xOy平面的直线与平面x/3+y/4+z/5=1的交点
将D点坐标代入平面方程即得所求点坐标(4/5,3/5,35/12)
解析法:
设该点坐标为(cosa,sina,z),a∈[0,2π)
则(cosa)/3+(sina)/4+z/5=1
z=5-(25/12)((4/5)cosa+(3/5)sina)
=5-(25/12)sin(a+b)
其中b∈(0,π/2),且sinb=4/5,cosb=3/5
当a+b=π/2+2kπ时,k∈Z
z最小为35/12
此时a=π/2-b
cosa=sinb=4/5,sina=cosb=3/5
故所求点坐标为(4/5,3/5,25/12)
看了平面x/3+y/4+z/5=1...的网友还看了以下:
已知矩形的周长为36m,矩形绕着它的一条边旋转形成一个圆柱,设矩形的一条边长为xm,圆柱的侧面积为 2020-04-07 …
把一个长宽高分别10,8,6厘米的长方体,削成一个最大圆柱,这个圆柱体积()立方厘米,表面积()平 2020-04-11 …
已知圆柱的侧面积是6π,若圆柱的底面半径为x厘米,高为y厘米,写出y关于x的函数解析式. 2020-05-12 …
matlab绘制球面及柱面(急!)如何在同一坐标系下绘制球面x^2+y^2+z^2=4和柱面x^+ 2020-05-16 …
求由z=x+y+1,x+y=1及三个坐标平面围成的立体的体积画出来平面z=x+y+1在后面 柱面在 2020-05-16 …
跪求数学高手大一文科数学题应用二重积分求由抛物柱面2y·y=x·x与平面x/4+y/2+z/2=1 2020-06-11 …
设∑是柱面x^2+y^2=9及平面z=0,z=3所围成的区域的整个边界曲面,计算∫∫(x^2+y^ 2020-06-15 …
柱面x2+y2=ax含于球面x2+y2+z2=a2内的曲面在xoy的投影全书上答案是z2=a2-a 2020-06-15 …
书上介绍的是当曲面为z=z(x,y)时的曲面积分,我做到一题是曲面为x^2+y^2=r^2;答案中 2020-06-15 …
左面柱子(a柱)高五米、右面柱子(b柱)高四米五、用三角连起来下方直线是十米长求上方斜线的左面柱子 2020-07-30 …