早教吧作业答案频道 -->数学-->
设曲面为抛物面z=1-x^2-y^2(0
题目详情
设曲面为抛物面z=1-x^2-y^2(0
▼优质解答
答案和解析
取Σ:x^2 + y^2 = 1 - z.(0 ≤ z ≤ 1)抛物面曲顶向上.
补面Σ1:z = 0.取下侧
∫∫(Σ+Σ1) 2x^3dydz + 2y^3dzdx + 2dxdy
= ∫∫∫Ω (6x^2 + 6y^2 + 0) dxdydz.Gauss定理
= 6∫∫∫Ω (x^2 + y^2) dxdydz
= 6∫(0,2π) dθ ∫(0,1) r dr ∫(0,1 - r^2) r^2 dz
= 6 * 2π * ∫(0,1) r^3 * (1 - r^2) dr
= 12π * ∫(0,1) (r^3 - r^5) dr
= 12π * (1/4 * r^4 - 1/6 * r^6):(0,1)
= 12π * 1/12
= π
∫∫Σ1 2x^3dydz + 2y^3dzdx + 2dxdy
= ∫∫Σ1 0 + 0 + 2dxdy
= 2∫∫D dxdy.x^2 + y^2 ≤ 1
= 2 * π * 1^2
= 2π
于是∫∫Σ + ∫∫Σ1 = ∫∫(Σ+Σ1) = π
∫∫Σ 2x^3dydz + 2y^3dzdx + 2dxdy = π - 2π = - π
补面Σ1:z = 0.取下侧
∫∫(Σ+Σ1) 2x^3dydz + 2y^3dzdx + 2dxdy
= ∫∫∫Ω (6x^2 + 6y^2 + 0) dxdydz.Gauss定理
= 6∫∫∫Ω (x^2 + y^2) dxdydz
= 6∫(0,2π) dθ ∫(0,1) r dr ∫(0,1 - r^2) r^2 dz
= 6 * 2π * ∫(0,1) r^3 * (1 - r^2) dr
= 12π * ∫(0,1) (r^3 - r^5) dr
= 12π * (1/4 * r^4 - 1/6 * r^6):(0,1)
= 12π * 1/12
= π
∫∫Σ1 2x^3dydz + 2y^3dzdx + 2dxdy
= ∫∫Σ1 0 + 0 + 2dxdy
= 2∫∫D dxdy.x^2 + y^2 ≤ 1
= 2 * π * 1^2
= 2π
于是∫∫Σ + ∫∫Σ1 = ∫∫(Σ+Σ1) = π
∫∫Σ 2x^3dydz + 2y^3dzdx + 2dxdy = π - 2π = - π
看了设曲面为抛物面z=1-x^2-...的网友还看了以下:
已知满足于x+y=a,x-y=4a的x,y和为2,求a值打错了,应是x+2y=a 2020-05-12 …
(个人认为比较难)一直抛物线y=ax平方+bx+c与y轴的交点为C,顶点为M,直线CM的解析式为y 2020-05-16 …
几道函数填空题1.抛物线y=x平方+x-12与x轴的交点坐标为,与y轴的交点坐标为.2.二次函数y 2020-05-23 …
一道二次函数题目,自我认为很难,请八方相助.已知抛物线y=aX2+bX+c与y轴的交点为C,顶点为 2020-06-07 …
1、抛物线y=2x^2+8+m与x轴只有一个交点,m值为?2、一直抛物线y=ax^2+bx+c经过 2020-06-14 …
已知抛物线y=x2+x-2(1)求抛物线与x轴的交点坐标;(2)将抛物线y=x2+x-2沿y轴向上 2020-06-29 …
如图,抛物线y=ax2+bx+c(a≠0)的顶点坐标为(2,-1)的抛物线y=ax²+bx+c(a 2020-07-29 …
反比例函数单调性反比例函数是不是不能说在世树的定义域内的单调性,因为像f(x)=1/x这样的函数, 2020-08-01 …
1.抛物线y=ax^2+c与y=3x^2的形状相同,且顶点坐标是(0,2),则其函数关系式是2.与抛 2020-11-20 …
如图给出了一个程序框图,其作用是输入x的值,输出相应的y值.若输出的y值为2,则所有这样的x值之和为 2021-01-15 …