早教吧作业答案频道 -->英语-->
数学微积分中的积分求旋转的体积只要答案即可Findthevolumeofthesolidobtainedbyrotatingtheregionboundedbyy=x^2,y=0,x=5,andaboutthey-axis.求绕y轴旋转后的体积.Findthevolumeofthesolidformedbyrotatin
题目详情
数学微积分中的积分 求旋转的体积 只要答案即可
Find the volume of the solid obtained by rotating the region bounded by y=x^2,y=0,x=5,and about
the y-axis.求绕y轴旋转后的体积.
Find the volume of the solid formed by rotating the region enclosed by
y=e^x +5,y=0,x=0,x=0.5, about the y-axis.求绕y轴旋转后的体积.
A ball of radius 15 has a round hole of radius 3 drilled through its center.
Find the volume of the resulting solid.
Find the volume of the solid obtained by rotating the region bounded by the
given curves about the specified axis.y=0,y=(cos6x),x=0,x=pi/12, about the axis y=-6.
有一个答案算一个,多多益善.
Find the volume of the solid obtained by rotating the region bounded by y=x^2,y=0,x=5,and about
the y-axis.求绕y轴旋转后的体积.
Find the volume of the solid formed by rotating the region enclosed by
y=e^x +5,y=0,x=0,x=0.5, about the y-axis.求绕y轴旋转后的体积.
A ball of radius 15 has a round hole of radius 3 drilled through its center.
Find the volume of the resulting solid.
Find the volume of the solid obtained by rotating the region bounded by the
given curves about the specified axis.y=0,y=(cos6x),x=0,x=pi/12, about the axis y=-6.
有一个答案算一个,多多益善.
▼优质解答
答案和解析
it's easier to use y-axis as variable. The range is 0 to 5 for x,0 to 25 for y; y = x^2,x = √y
V = ∫₀²⁵π[5² - (√y)²]dy = π(25y - y²/2)|₀²⁵ = 625π/2
Just consider the first quadrant in a plane. A circle of raduius 15 is expressed as y = √(15² - x²); the hole can be considered as line y = 3; 3 = √(15² - x²),x² = 216
they inercept at (√216,3)
The volume is double the result from rotating the region about the x-axis
V = 2∫π[(15² - x²) - 3²]dx 0 to √216
= 2π(216x - x³/3) 0 to √216
= (1064√54)π/3
x = 0,y = 1; x = π/12,y = cos(π/2) = 0
The inner radius of the solid is r = 0 - (-6) = 6; the outer radius of the solid is R = cos(6x) - (-6) = 6 + cos(6x)
V = ∫π(((6 + cos(6x))² - 6²)dx 0 to π/12
= π∫[12cos(6x) + cos²(6x)]dx = π∫[12cos(6x) + cos²(6x)]dx
= π∫[12cos(6x) + 1/2 + (1/2)cos(12x)]dx
= π[x/2 + 2sin(6x) + (1/24)cos(12x)] 0 to π/12
= π(π/12 + 2 - 1/24) - π(0 + 0 + 1/24)
= π(2 + π/12)
V = ∫₀²⁵π[5² - (√y)²]dy = π(25y - y²/2)|₀²⁵ = 625π/2
Just consider the first quadrant in a plane. A circle of raduius 15 is expressed as y = √(15² - x²); the hole can be considered as line y = 3; 3 = √(15² - x²),x² = 216
they inercept at (√216,3)
The volume is double the result from rotating the region about the x-axis
V = 2∫π[(15² - x²) - 3²]dx 0 to √216
= 2π(216x - x³/3) 0 to √216
= (1064√54)π/3
x = 0,y = 1; x = π/12,y = cos(π/2) = 0
The inner radius of the solid is r = 0 - (-6) = 6; the outer radius of the solid is R = cos(6x) - (-6) = 6 + cos(6x)
V = ∫π(((6 + cos(6x))² - 6²)dx 0 to π/12
= π∫[12cos(6x) + cos²(6x)]dx = π∫[12cos(6x) + cos²(6x)]dx
= π∫[12cos(6x) + 1/2 + (1/2)cos(12x)]dx
= π[x/2 + 2sin(6x) + (1/24)cos(12x)] 0 to π/12
= π(π/12 + 2 - 1/24) - π(0 + 0 + 1/24)
= π(2 + π/12)
看了数学微积分中的积分求旋转的体积...的网友还看了以下:
f(x1)f(x2)+g(x1)g(x2)=g(x1-x2),求证[f(x)]^n+[g(x)]^ 2020-05-17 …
一个关于群论的问题,拉格朗日定理是有穷群的子群的元数是这群的元数的因数,即|G|=|H|*|G:H 2020-06-22 …
(2014•四川)在10L恒容密闭容器中充入X(g)和Y(g),发生反应X(g)+Y(g)⇌M(g 2020-06-23 …
已知某温度下可逆反应:M(g)+N(g)⇌P(g)+Q(g),反应物的初始浓度分别为:c0(M)= 2020-07-09 …
对大于0的自然数n规定一种运算“G”:①当n是奇数时,G(n)=3n+1;②当n是偶数时,G(n) 2020-07-22 …
已知f(n)=1+123+133+143+…+1n3,g(n)=32-12n2,n∈N*.(1)当 2020-07-22 …
极限的问题若f(n)、g(n)分别是关于n的一元多项式,f(n)=apn^p+a(p-1)n^(p 2020-08-03 …
已知f(x)=bx+1为x的一次函数,b为不等于1的常数,且g(n)=1(n=0)f[g(n-1)] 2020-11-17 …
土星探测器在半径为R的土星上空离土星H的圆形轨道上绕土星飞行,环绕n周的飞行时间为t,引力常量为G, 2020-12-16 …
计算土星的质量和平均密度若探测器进入绕土星飞行的轨道,在半径为R的土星上空离土星表面高h的圆形轨道上 2020-12-16 …