早教吧作业答案频道 -->英语-->
数学微积分中的积分求旋转的体积只要答案即可Findthevolumeofthesolidobtainedbyrotatingtheregionboundedbyy=x^2,y=0,x=5,andaboutthey-axis.求绕y轴旋转后的体积.Findthevolumeofthesolidformedbyrotatin
题目详情
数学微积分中的积分 求旋转的体积 只要答案即可
Find the volume of the solid obtained by rotating the region bounded by y=x^2,y=0,x=5,and about
the y-axis.求绕y轴旋转后的体积.
Find the volume of the solid formed by rotating the region enclosed by
y=e^x +5,y=0,x=0,x=0.5, about the y-axis.求绕y轴旋转后的体积.
A ball of radius 15 has a round hole of radius 3 drilled through its center.
Find the volume of the resulting solid.
Find the volume of the solid obtained by rotating the region bounded by the
given curves about the specified axis.y=0,y=(cos6x),x=0,x=pi/12, about the axis y=-6.
有一个答案算一个,多多益善.
Find the volume of the solid obtained by rotating the region bounded by y=x^2,y=0,x=5,and about
the y-axis.求绕y轴旋转后的体积.
Find the volume of the solid formed by rotating the region enclosed by
y=e^x +5,y=0,x=0,x=0.5, about the y-axis.求绕y轴旋转后的体积.
A ball of radius 15 has a round hole of radius 3 drilled through its center.
Find the volume of the resulting solid.
Find the volume of the solid obtained by rotating the region bounded by the
given curves about the specified axis.y=0,y=(cos6x),x=0,x=pi/12, about the axis y=-6.
有一个答案算一个,多多益善.
▼优质解答
答案和解析
it's easier to use y-axis as variable. The range is 0 to 5 for x,0 to 25 for y; y = x^2,x = √y
V = ∫₀²⁵π[5² - (√y)²]dy = π(25y - y²/2)|₀²⁵ = 625π/2
Just consider the first quadrant in a plane. A circle of raduius 15 is expressed as y = √(15² - x²); the hole can be considered as line y = 3; 3 = √(15² - x²),x² = 216
they inercept at (√216,3)
The volume is double the result from rotating the region about the x-axis
V = 2∫π[(15² - x²) - 3²]dx 0 to √216
= 2π(216x - x³/3) 0 to √216
= (1064√54)π/3
x = 0,y = 1; x = π/12,y = cos(π/2) = 0
The inner radius of the solid is r = 0 - (-6) = 6; the outer radius of the solid is R = cos(6x) - (-6) = 6 + cos(6x)
V = ∫π(((6 + cos(6x))² - 6²)dx 0 to π/12
= π∫[12cos(6x) + cos²(6x)]dx = π∫[12cos(6x) + cos²(6x)]dx
= π∫[12cos(6x) + 1/2 + (1/2)cos(12x)]dx
= π[x/2 + 2sin(6x) + (1/24)cos(12x)] 0 to π/12
= π(π/12 + 2 - 1/24) - π(0 + 0 + 1/24)
= π(2 + π/12)
V = ∫₀²⁵π[5² - (√y)²]dy = π(25y - y²/2)|₀²⁵ = 625π/2
Just consider the first quadrant in a plane. A circle of raduius 15 is expressed as y = √(15² - x²); the hole can be considered as line y = 3; 3 = √(15² - x²),x² = 216
they inercept at (√216,3)
The volume is double the result from rotating the region about the x-axis
V = 2∫π[(15² - x²) - 3²]dx 0 to √216
= 2π(216x - x³/3) 0 to √216
= (1064√54)π/3
x = 0,y = 1; x = π/12,y = cos(π/2) = 0
The inner radius of the solid is r = 0 - (-6) = 6; the outer radius of the solid is R = cos(6x) - (-6) = 6 + cos(6x)
V = ∫π(((6 + cos(6x))² - 6²)dx 0 to π/12
= π∫[12cos(6x) + cos²(6x)]dx = π∫[12cos(6x) + cos²(6x)]dx
= π∫[12cos(6x) + 1/2 + (1/2)cos(12x)]dx
= π[x/2 + 2sin(6x) + (1/24)cos(12x)] 0 to π/12
= π(π/12 + 2 - 1/24) - π(0 + 0 + 1/24)
= π(2 + π/12)
看了数学微积分中的积分求旋转的体积...的网友还看了以下:
公安科技群众化的内容主要有( )A.积极推广适用于民间的公安科技B.提高群众自防、自救能力C.在群众 2020-05-19 …
企业亏损弥补的渠道主要有( )A.税前利润弥补B.税后利润弥补C.盈余公积弥补D.资本公积弥补E 2020-05-19 …
线性代数问题A是n阶矩阵,A2-2A+E=0得到A=E对不?还是A=E是前式的充分非必要条件?帮忙 2020-06-12 …
积分第一中值定理的推广f(x)g(x)在a,b连续.g(x)不变号,求证:存在一点e∈a,b使∫( 2020-06-14 …
liman=a的充要条件是对于任意的e>0,只有有限项的an不在(a-e,a+e)中.求具体证明过 2020-06-23 …
设曲线的极坐标方程为ρ=e^(aθ)(a>0),则该曲线上相当于θ从0变到2π的一段弧与极轴所围成 2020-07-31 …
矩阵分配律(A-E)(A+E)=(A+E)(A-E),因为两边的乘积都为A^2-E^2,不是在矩阵 2020-07-31 …
EXCEL循环或计算问题。F=A+B+C+D+E。(A.B.C.D.E.F.均要大于零)E=A*10 2020-11-01 …
A是n阶方阵,且满足A^2=E,则下列结论正确的是()A:若A不等于E,则A+E不可逆B:若A不等于 2020-11-02 …
不定积分题1、若[f(x)dx=F(x)+c,则[xf(1-x^2)dx=()注:“[”是不定积分符 2020-11-10 …