早教吧作业答案频道 -->数学-->
化简:x2+yzx2+(y−z)x−yz+y2−zxy2+(z+x)y+zx+z2+xyz2−(x−y)z−xy=.
题目详情
化简:
+
+
=______.
x2+yz |
x2+(y−z)x−yz |
y2−zx |
y2+(z+x)y+zx |
z2+xy |
z2−(x−y)z−xy |
▼优质解答
答案和解析
∵x2+(y-z)x-yz=x2+xy-xz-yz=x(x+y)-z(x+y)=(x+y)(x-z),
y2+(z+x)y+zx=y2+zy+zy+zx=y(y+z)+z(x+y)=(x+y)(y+z),
z2-(x-y)z-xy=z2-xz+yz-xy=z(z-x)+y(z-x)=(y+z)(z-x),
∴通分公分母是(x+y)(y+z)(z-x),
分子是:-(x2+yz)(y+z)+(y2-zx)(z-x)+(z2+xy)(x+y),
=(-x2y-x2z-y2z-z2y)+(y2z-y2x-z2x+x2z)+(z2x+z2y+x2y+y2x),
=(-x2y+x2y)+(-x2z+x2z)+(-y2z+y2z)+(-z2y+z2y)+(-y2x+y2x)+(-z2x+z2x),i
=0,
∴
+
+
=
=0.
故答案为:0.
y2+(z+x)y+zx=y2+zy+zy+zx=y(y+z)+z(x+y)=(x+y)(y+z),
z2-(x-y)z-xy=z2-xz+yz-xy=z(z-x)+y(z-x)=(y+z)(z-x),
∴通分公分母是(x+y)(y+z)(z-x),
分子是:-(x2+yz)(y+z)+(y2-zx)(z-x)+(z2+xy)(x+y),
=(-x2y-x2z-y2z-z2y)+(y2z-y2x-z2x+x2z)+(z2x+z2y+x2y+y2x),
=(-x2y+x2y)+(-x2z+x2z)+(-y2z+y2z)+(-z2y+z2y)+(-y2x+y2x)+(-z2x+z2x),i
=0,
∴
x2+yz |
x2+(y−z)x−yz |
y2−zx |
y2+(z+x)y+zx |
z2+xy |
z2−(x−y)z−xy |
0 |
(x+y)(y+z)(z−x) |
故答案为:0.
看了化简:x2+yzx2+(y−z...的网友还看了以下:
如图为元素周期表中短周期的一部分,关于Y、Z、M的说法正确的是()A.电负性:Y>Z>MB.离子半 2020-05-14 …
设x,y,z∈R+,求证 2z2-x2-y2/(x+y)+2x2-y2-z2/(y+z)≥x2+z 2020-05-16 …
已知xyz满足z+y+z=xyz求证:x(1-y2)(1-z2)+y(1-x2)(1-z2)+z( 2020-05-20 …
不等式问题x,y,z∈R+,且x+y+z=z.试证明x,y,z∈R+,且x+y+z=z.试证明:对 2020-06-14 …
设Σ为球面x2+y2+z2=3,外侧为正,则∯(x-1)dxdy的值为,∯(z2-y)dxdy=. 2020-07-31 …
已知x、y、z满足2x-y-2z-6=0,已知x、y、z满足2x-y-2z-6=0,x2+y2+z2 2020-10-31 …
X、Y、Z、W四种元素,常见化合价均为+2价.己知:X2+与单质W不反应,X2++Z=X+Z2+Y+ 2020-10-31 …
复数z1=x+yi,z2=y-xi,且z1+z2=3+i,则|z1|=()A.3B.5C.3D.5 2020-11-01 …
已知x,y∈R,且复数z1=x+y-30-xyi和复数z2=-|x+yi|+60i是共轭复数,设复数 2020-11-03 …
一道证明题若x+y+z=xyz,证明:x(1-y2)(1-z2)+y(1-x2)(1-z2)+z(1 2020-11-07 …