早教吧作业答案频道 -->数学-->
x,y,z是正整数,且(xy+1)(yz+1)(zx+1)是平方数.证明:xy+1等都是平方数几种解法都写出来,
题目详情
x,y,z是正整数,且(xy+1)(yz+1)(zx+1)是平方数.证明:xy+1等都是平方数 几种解法都写出来,
▼优质解答
答案和解析
我只见过一种方法,给你参考一下
如果结论不对,取出满足条件但结论不成立的最小的一组(x,y,z),以x+y+z最小为标准.
不妨设其中z>=y>=x,那么z>1,否则x=y=z=1,矛盾.
令w1=x+y+z+2xyz+2sqrt[(xy+1)(yz+1)(zx+1)],w2=x+y+z+2xyz-2sqrt[(xy+1)(yz+1)(zx+1)]
那么w1,w2是一元二次方程
x^2+y^2+z^2+w^2-2(xy+yz+zx+xw+yw+zw)-4xyzw-4=0……(1)
的两个整数根
把方程(1)改写成
(y+z-x-w)^2 = 4(yz+1)(xw+1)……(2)
(x+z-y-w)^2 = 4(xz+1)(yw+1)……(3)
(x+y-z-w)^2 = 4(xy+1)(zw+1)……(4)
以下的目标是证明(x,y,w1)是更小的一组满足条件但结论不成立,来导致矛盾.
从(2),(3),(4)可知xw+1,yw+1,zw+1不全是完全平方数但其乘积是平方数,所以xw+1,yw+1,xy+1也不全是完全平方数.
再注意zw+1>0,所以w>-1/z>-1,即w>=0.但w=0时xw+1,yw+1,zw+1都是完全平方数,所以只能w>0,即w2>w1>0.
另一方面w1w2=x^2+y^2+z^2-2(xy+yz+zx)-4 < z^2-x(2z-x)-y(2z-y) < z^2,这样w1
如果结论不对,取出满足条件但结论不成立的最小的一组(x,y,z),以x+y+z最小为标准.
不妨设其中z>=y>=x,那么z>1,否则x=y=z=1,矛盾.
令w1=x+y+z+2xyz+2sqrt[(xy+1)(yz+1)(zx+1)],w2=x+y+z+2xyz-2sqrt[(xy+1)(yz+1)(zx+1)]
那么w1,w2是一元二次方程
x^2+y^2+z^2+w^2-2(xy+yz+zx+xw+yw+zw)-4xyzw-4=0……(1)
的两个整数根
把方程(1)改写成
(y+z-x-w)^2 = 4(yz+1)(xw+1)……(2)
(x+z-y-w)^2 = 4(xz+1)(yw+1)……(3)
(x+y-z-w)^2 = 4(xy+1)(zw+1)……(4)
以下的目标是证明(x,y,w1)是更小的一组满足条件但结论不成立,来导致矛盾.
从(2),(3),(4)可知xw+1,yw+1,zw+1不全是完全平方数但其乘积是平方数,所以xw+1,yw+1,xy+1也不全是完全平方数.
再注意zw+1>0,所以w>-1/z>-1,即w>=0.但w=0时xw+1,yw+1,zw+1都是完全平方数,所以只能w>0,即w2>w1>0.
另一方面w1w2=x^2+y^2+z^2-2(xy+yz+zx)-4 < z^2-x(2z-x)-y(2z-y) < z^2,这样w1
看了x,y,z是正整数,且(xy+...的网友还看了以下:
求解二元函数,已知xy,函数也已知,怎么样用MATLAB求解?方程f(x,y) = p00 + p 2020-05-16 …
初等数论中组合数是整数的证明您好,看到您在初等数论中证明组合数Cmn是整数的帖子,想向您了解下哪本 2020-06-19 …
十进制与二进制转换的问题,要写明倍数关系的推导过程把一个数从十进制改成二进制时,小明得(***** 2020-07-16 …
严格递增正整数数列{an},证明n趋于无穷时极限sin(an)存在已知正整数数列{an}为严格递增 2020-08-02 …
小明的父亲今年是小明岁数的4倍,而6年钱小明父亲岁数是小明岁数的9倍求今年小明和他父亲的岁数 2020-11-06 …
1.小明按1到5报数,小红按1到7报数,当两人都各自报了666个数时,小红报的数字之和比小明报的数字 2020-11-17 …
帮我把数学题写好,请指教!写好了后!就可以教你语文知识!1.证明函数f(x)=-2x+1在R上是减函 2020-12-08 …
1.证明函数f(x)=-x^2在(负无穷,0)上是增函数,在(0,正无穷)上是减函数.2.判断函数f 2020-12-23 …
数学老师对小明参加的4次中考数学模拟考试成绩进行统计分析,判断小明的数学成绩是否稳定,于是老师需要知 2021-01-22 …
数学老师对小明参加的4次中考数学模拟考试成绩进行统计分析,判断小明的数学成绩是否稳定,于是老师需要知 2021-01-22 …