早教吧作业答案频道 -->数学-->
解方程组x^2+2yz=x,y^2+2zx=z,z^2+2xy=y
题目详情
解方程组 x^2+2yz=x ,y^2+2zx=z ,z^2+2xy=y
▼优质解答
答案和解析
三式相加:x^2+y^2+z^2+2xy+2xz+2yz=x+y+z
即(x+y+z)^2=(x+y+z)
得(x+y+z)(x+y+z-1)=0
因此x+y+z=0,或x+y+z=1
2)-3):y^2-z^2+2x(z-y)=z-y,得:(y-z)(y+z-2x+1)=0,得y=z或y+z-2x+1=0
因此分四种情况:
1)x+y+z=0,y=z,得:x=-2y,代入1) 4y^2+2y^2=-2y,得:3y^2+y=0,得;y=0,-1/3
此时解为:(0.0.0).(2/3,-1/3.-1/3)
2)x+y+z=0,y+z-2x+1=0,两式相减:3x-1=0,得x=1/3,y+z=-1/3,2yz=x-x^2=1/3-1/9=-2/9
即yz=-1/9,解得:y,z=(-1+√5)/6,(-1-√5)/6
此时解为:(1/3,(-1+√5)/6,(-1-√5)/6),(1/3,(-1-√5)/6,(-1+√5)/6),
3)x+y+z=1,y=z,得x=1-2y,代入2):y^2+2y(1-2y)=y,得:y=0,1/3
此时解为:(1,0.0),(1/3.1/3,1/3)
4)x+y+z=1,y+z-2x+1=0,两式相减:3x-1=1,得x=2/3,y+z=1/3,2yz=x-x^2=2/3-4/9=2/9
即yz=1/9,此时无实根
即(x+y+z)^2=(x+y+z)
得(x+y+z)(x+y+z-1)=0
因此x+y+z=0,或x+y+z=1
2)-3):y^2-z^2+2x(z-y)=z-y,得:(y-z)(y+z-2x+1)=0,得y=z或y+z-2x+1=0
因此分四种情况:
1)x+y+z=0,y=z,得:x=-2y,代入1) 4y^2+2y^2=-2y,得:3y^2+y=0,得;y=0,-1/3
此时解为:(0.0.0).(2/3,-1/3.-1/3)
2)x+y+z=0,y+z-2x+1=0,两式相减:3x-1=0,得x=1/3,y+z=-1/3,2yz=x-x^2=1/3-1/9=-2/9
即yz=-1/9,解得:y,z=(-1+√5)/6,(-1-√5)/6
此时解为:(1/3,(-1+√5)/6,(-1-√5)/6),(1/3,(-1-√5)/6,(-1+√5)/6),
3)x+y+z=1,y=z,得x=1-2y,代入2):y^2+2y(1-2y)=y,得:y=0,1/3
此时解为:(1,0.0),(1/3.1/3,1/3)
4)x+y+z=1,y+z-2x+1=0,两式相减:3x-1=1,得x=2/3,y+z=1/3,2yz=x-x^2=2/3-4/9=2/9
即yz=1/9,此时无实根
看了解方程组x^2+2yz=x,y...的网友还看了以下:
协方差cov(X+20,Y+10)=cov(X,知道了COV(X+a,Y+b)=E[(X+a)(Y 2020-06-17 …
根据下列条件,判别个组数是否成比例,若成比例,请写出比例式(过程,(1)1,-2,3,-6(2)1 2020-07-15 …
判断下列对应是否为函数1)x→x的算术平方根,x∈A,A为正整数集,B=R2)x→y,y²=x,x 2020-07-20 …
doublex=0;doubley=0;doublexd=-0.3146;doubleyd=0.2 2020-07-23 …
用隐函数求导法则对x^y=y^x求导为什么会得出x^2=y^2x^y=y^x用隐函数求导法则yx^( 2020-10-31 …
已知(y+z-x)/(x+y+z)=(z+x-y)/(y+z-x)=(x+y-z)/(z+x-y)= 2020-11-01 …
为什么方法不一样答案不一样求xy=e^(x+y)的导数方法一两边取对数lnx+lny=x+y求导(1 2020-11-06 …
如果实数x,y满足条件(看补充)x-y+1≥0如果实数x,y满足条件y+1≥0,那么4^x*(1/2 2020-11-19 …
已知x,y为有理数,且x≠0,y≠0,求|x|/x+|y|/y的值.①已知x,y,z为有理数,且x≠ 2020-12-31 …
1、下列各式的变号中,正确的是A、x-y/y-x=y-x/x-yB、x-y/(y-x)²=y-x/( 2021-01-23 …