早教吧 育儿知识 作业答案 考试题库 百科 知识分享

xyz=1x+y+z=2x^2+y^2+z^2=16求1/(xy+2z)+1/(yz+2x)+1/(xz+2y)的值?

题目详情
xyz=1 x+y+z=2 x^2+y^2+z^2=16 求1/(xy+2z)+1/(yz+2x)+1/(xz+2y)的值?
▼优质解答
答案和解析
因为xyz=1,x+y+z=2,x^2+y^2+z^2=16 所以由(x+y+z)^2=x^2+y^2+z^2+2(xy+yz+zx)得xy+yz+zx=-6又z=2-x-y2z=4-2x-2y所以1/(xy+2z)=1/(xy+4-2x-2y)=1/[(xy-2x)-(2y-4)]=1/[x(y-2)-2(y-2)]=1/[(x-2)(y-2)]同理1/(yz+2x)=1/...