早教吧作业答案频道 -->数学-->
已知函数f(x)=(x2+ax-a)•e1-x,其中a∈R.(Ⅰ)求函数f'(x)的零点个数;(Ⅱ)证明:a≥0是函数f(x)存在最小值的充分而不必要条件.
题目详情
已知函数f(x)=(x2+ax-a)•e1-x,其中a∈R.
(Ⅰ)求函数f'(x)的零点个数;
(Ⅱ)证明:a≥0是函数f(x)存在最小值的充分而不必要条件.
(Ⅰ)求函数f'(x)的零点个数;
(Ⅱ)证明:a≥0是函数f(x)存在最小值的充分而不必要条件.
▼优质解答
答案和解析
(Ⅰ)由f(x)=(x2+ax-a)•e1-x,
得f′(x)=(2x+a)e1-x-(x2+ax-a)•e1-x=-[x2+(a-2)x-2a]•e1-x=-(x+a)(x-2)•e1-x,
令f′(x)=0,得x=2,或x=-a.
所以当a=-2时,函数f′(x)有且只有一个零点:x=2;
当a≠-2时,函数f′(x)有两个相异的零点:x=2,x=-a.
(Ⅱ)证明:①当a=-2时,f′(x)≤0恒成立,此时函数f(x)在(-∞,+∞)上单调递减,
所以,函数f(x)无极值.
②当a>-2时,f′(x),f(x)的变化情况如下表:
所以,a≥0时,f(x)的极小值为f(-a)=-ae1+a≤0.
又x>2时,x2+ax-a>22+2a-a=a+4>0,
所以,当x>2时,f(x)=)=(x2+ax-a)•e1-x>0恒成立.
所以,f(-a)=-ae1+a为f(x)的最小值.
故a≥0是函数f(x)存在最小值的充分条件.
③当a=-5时,f′(x),f(x)的变化情况如下表:
因为当x>5时,f(x)=(x2-5x+5)e1-x>0,
又f(2)=-e-1<0,
所以,当a=-5时,函数f(x)也存在最小值.
所以,a≥0不是函数f(x)存在最小值的必要条件.
综上,a≥0是函数f(x)存在最小值的充分而不必要条件.
得f′(x)=(2x+a)e1-x-(x2+ax-a)•e1-x=-[x2+(a-2)x-2a]•e1-x=-(x+a)(x-2)•e1-x,
令f′(x)=0,得x=2,或x=-a.
所以当a=-2时,函数f′(x)有且只有一个零点:x=2;
当a≠-2时,函数f′(x)有两个相异的零点:x=2,x=-a.
(Ⅱ)证明:①当a=-2时,f′(x)≤0恒成立,此时函数f(x)在(-∞,+∞)上单调递减,
所以,函数f(x)无极值.
②当a>-2时,f′(x),f(x)的变化情况如下表:
| x | (-∞,-a) | -a | (-a,2) | 2 | (2,+∞) |
| f′(x) | - | 0 | + | 0 | - |
| f(x) | ↘ | 极小值 | ↗ | 极大值 | ↘ |
又x>2时,x2+ax-a>22+2a-a=a+4>0,
所以,当x>2时,f(x)=)=(x2+ax-a)•e1-x>0恒成立.
所以,f(-a)=-ae1+a为f(x)的最小值.
故a≥0是函数f(x)存在最小值的充分条件.
③当a=-5时,f′(x),f(x)的变化情况如下表:
| x | (-∞,2) | 2 | (2,5) | 5 | (5,+∞) |
| f′(x) | - | 0 | + | 0 | - |
| f(x) | ↘ | 极小值 | ↗ | 极大值 | ↘ |
又f(2)=-e-1<0,
所以,当a=-5时,函数f(x)也存在最小值.
所以,a≥0不是函数f(x)存在最小值的必要条件.
综上,a≥0是函数f(x)存在最小值的充分而不必要条件.
看了已知函数f(x)=(x2+ax...的网友还看了以下:
已知函数f(x)=-x^3+ax^2+bx+c图像上的点p(1.f(1))处的切线方程为y=_3x 2020-04-05 …
A是n阶正交矩阵,对任意n维列向量X,AX保持向量X的长度.求证明|AX|*|AX|=(AX,AX 2020-04-05 …
1“-1<x<3”是“x<3”的()A充分不必要条件B必要不充分条件C既充分也必要条件D及不充分也 2020-04-26 …
已知集合M={1,2},N={X/ax+1=0} 已知集合M={1,2}N={X/ax+1=0} 2020-05-16 …
初二上半学期一元二次方程解答题1.关于x的方程(a-b)x²+ax+b=0在什么条件下是一元一次方 2020-06-05 …
函数f(x)=ax+b为奇函数的条件是?函数f(x)=ax²+bx+c为偶函数的条件是? 2020-06-06 …
已知函数f(x)=ax的平方+2x+c(x属于r)满足f(x+1=ax的平方+4.(1)求f(x) 2020-07-14 …
两条高一集合题.1.设全集U=R,集合A={x|ax+b≠0},B={x|cx+d≠0},则C={ 2020-07-30 …
函数f(x)=ax^2+2x+1,g(x)=lnx.(1)设F(x)=f(x)-g(x),求F(x 2020-08-01 …
二次函数在指定区间上恒成立问题的充分必要条件的有关问题,看是否正确,0分当X属于[m,n]时,f(x 2020-11-01 …