早教吧作业答案频道 -->数学-->
已知函数f(x)=(x2+ax-a)•e1-x,其中a∈R.(Ⅰ)求函数f'(x)的零点个数;(Ⅱ)证明:a≥0是函数f(x)存在最小值的充分而不必要条件.
题目详情
已知函数f(x)=(x2+ax-a)•e1-x,其中a∈R.
(Ⅰ)求函数f'(x)的零点个数;
(Ⅱ)证明:a≥0是函数f(x)存在最小值的充分而不必要条件.
(Ⅰ)求函数f'(x)的零点个数;
(Ⅱ)证明:a≥0是函数f(x)存在最小值的充分而不必要条件.
▼优质解答
答案和解析
(Ⅰ)由f(x)=(x2+ax-a)•e1-x,
得f′(x)=(2x+a)e1-x-(x2+ax-a)•e1-x=-[x2+(a-2)x-2a]•e1-x=-(x+a)(x-2)•e1-x,
令f′(x)=0,得x=2,或x=-a.
所以当a=-2时,函数f′(x)有且只有一个零点:x=2;
当a≠-2时,函数f′(x)有两个相异的零点:x=2,x=-a.
(Ⅱ)证明:①当a=-2时,f′(x)≤0恒成立,此时函数f(x)在(-∞,+∞)上单调递减,
所以,函数f(x)无极值.
②当a>-2时,f′(x),f(x)的变化情况如下表:
所以,a≥0时,f(x)的极小值为f(-a)=-ae1+a≤0.
又x>2时,x2+ax-a>22+2a-a=a+4>0,
所以,当x>2时,f(x)=)=(x2+ax-a)•e1-x>0恒成立.
所以,f(-a)=-ae1+a为f(x)的最小值.
故a≥0是函数f(x)存在最小值的充分条件.
③当a=-5时,f′(x),f(x)的变化情况如下表:
因为当x>5时,f(x)=(x2-5x+5)e1-x>0,
又f(2)=-e-1<0,
所以,当a=-5时,函数f(x)也存在最小值.
所以,a≥0不是函数f(x)存在最小值的必要条件.
综上,a≥0是函数f(x)存在最小值的充分而不必要条件.
得f′(x)=(2x+a)e1-x-(x2+ax-a)•e1-x=-[x2+(a-2)x-2a]•e1-x=-(x+a)(x-2)•e1-x,
令f′(x)=0,得x=2,或x=-a.
所以当a=-2时,函数f′(x)有且只有一个零点:x=2;
当a≠-2时,函数f′(x)有两个相异的零点:x=2,x=-a.
(Ⅱ)证明:①当a=-2时,f′(x)≤0恒成立,此时函数f(x)在(-∞,+∞)上单调递减,
所以,函数f(x)无极值.
②当a>-2时,f′(x),f(x)的变化情况如下表:
x | (-∞,-a) | -a | (-a,2) | 2 | (2,+∞) |
f′(x) | - | 0 | + | 0 | - |
f(x) | ↘ | 极小值 | ↗ | 极大值 | ↘ |
又x>2时,x2+ax-a>22+2a-a=a+4>0,
所以,当x>2时,f(x)=)=(x2+ax-a)•e1-x>0恒成立.
所以,f(-a)=-ae1+a为f(x)的最小值.
故a≥0是函数f(x)存在最小值的充分条件.
③当a=-5时,f′(x),f(x)的变化情况如下表:
x | (-∞,2) | 2 | (2,5) | 5 | (5,+∞) |
f′(x) | - | 0 | + | 0 | - |
f(x) | ↘ | 极小值 | ↗ | 极大值 | ↘ |
又f(2)=-e-1<0,
所以,当a=-5时,函数f(x)也存在最小值.
所以,a≥0不是函数f(x)存在最小值的必要条件.
综上,a≥0是函数f(x)存在最小值的充分而不必要条件.
看了已知函数f(x)=(x2+ax...的网友还看了以下:
瀑布模型把软件生存周期划分为软件定义、软件开发与 ______ 三个阶段,而每个阶段又可分为若干更小 2020-05-23 …
某快递公司已存在部分快件,但仍有快件不断运来.公司决定用快递专车将快件分给客户(装车时间不计)若用 2020-06-16 …
文件分配表FAT需要占用多少存储空间的计算问题。29.假定磁盘块的大小为1K,对于540M的硬盘, 2020-06-16 …
应用题:比例装配一台机器需要甲、乙、丙三种部件各一件,现库存中存有这三种部件共270件,分别用甲、 2020-07-19 …
某快递公司已存在部分快件,但仍有快件不断运来.公司决定用快递专车将快件分给客户(装车时间不计)若用9 2020-11-14 …
1.13*(x-3)=5x+92.2*(3x-4)+(4-x)=4x3.仓库里共有货物119件,分成 2020-11-19 …
下列叙述中,正确的是.A.在Word下的“快速保存文件”是将整个文件内容存盘B.替换对话框中“区分大 2020-11-28 …
某工业企业甲材料的购进、发出和储存情况如下:月初甲材料结存金额为2000万元,结存200件,该存货为 2020-12-07 …
微型机中的CPU是。选项:a、分析、控制并执行指令的部件b、寄存器c、分析、控制并执行指令的部件和存 2020-12-08 …
用Flash制作课件时,下面关于使用元件的说法错误的是。A.在课件文档中使用元件与整个文件的大小无关 2021-01-01 …