早教吧作业答案频道 -->数学-->
已知{an}是公差d≠0的等差数列,a2,a6,a22成等比数列,a4+a6=26;数列{bn}是公比q为正数的等比数列,且b3=a2,b5=a6.(Ⅰ)求数列{an},{bn}的通项公式;(Ⅱ)求数列{an•bn}的前n项和Tn.
题目详情
已知{an}是公差d≠0的等差数列,a2,a6,a22成等比数列,a4+a6=26;数列{bn}是公比q为正数的等比数列,且b3=a2,b5=a6.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)求数列{an•bn}的前n项和Tn.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)求数列{an•bn}的前n项和Tn.
▼优质解答
答案和解析
(Ⅰ)∵{an}是公差d≠0的等差数列,且a4+a6=26,
∴a5=13,
又∵a2,a6,a22成等比数列,
∴(13+d)2=(13-3d)(13+17d),
解得:d=3或d=0(舍),
∴an=a5+(n-5)d=3n-2;
又∵b3=a2,b5=a6,
∴q2=
=
=
=4,
∴q=2或q=-2(舍),
又∵b3=a2=4,
∴bn=b3•qn-3=4•2n-3=2n-1;
(Ⅱ)由(I)可知,an•bn=(3n-2)•2n-1,
∴Tn=1•20+4•21+7•22+…+(3n-5)•2n-2+(3n-2)•2n-1,
2Tn=1•21+4•22+…+(3n-5)•2n-1+(3n-2)•2n,
错位相减得:-Tn=1+3(21+22+…+2n-1)-(3n-2)•2n
=1+3•
-(3n-2)•2n
=-5-(3n-5)•2n,
∴Tn=5+(3n-5)•2n.
∴a5=13,
又∵a2,a6,a22成等比数列,
∴(13+d)2=(13-3d)(13+17d),
解得:d=3或d=0(舍),
∴an=a5+(n-5)d=3n-2;
又∵b3=a2,b5=a6,
∴q2=
b5 |
b3 |
a6 |
a2 |
3×6-2 |
3×2-2 |
∴q=2或q=-2(舍),
又∵b3=a2=4,
∴bn=b3•qn-3=4•2n-3=2n-1;
(Ⅱ)由(I)可知,an•bn=(3n-2)•2n-1,
∴Tn=1•20+4•21+7•22+…+(3n-5)•2n-2+(3n-2)•2n-1,
2Tn=1•21+4•22+…+(3n-5)•2n-1+(3n-2)•2n,
错位相减得:-Tn=1+3(21+22+…+2n-1)-(3n-2)•2n
=1+3•
2(1-2n-1) |
1-2 |
=-5-(3n-5)•2n,
∴Tn=5+(3n-5)•2n.
看了已知{an}是公差d≠0的等差...的网友还看了以下:
数列{an}是以a为着项,q为公比的等比数列,令bn=1-a1-a2-a3-…-an,Cn=2-b 2020-05-13 …
Matlab问题求解.我写了个程序e=0.001;c=[5;4;3;2;1]Q=[5 4 3 2 2020-05-16 …
已知关于x的方程x的平方+px+q=0的两个实数根为p,q.求p,q的值将p,q分别代入x²+px 2020-05-16 …
1.若多项式5M的平方+3MN-N平方加上多项式Q后,得M的平方-MN,则多项式Q为2.下列算式: 2020-05-23 …
已知等比数列{an}的各项均为正数,公比0<q<1,设P=a3+a92,Q=a5•a7,则a3、a 2020-07-09 …
如果(x+q)(x+1/5)的积中不含x项,则q等于(x+q)(x+1/5)=x^2+(q+1/5 2020-07-11 …
一道极限和数列的综合问题.急设首项为a公差为d的等差数列的钱n项和为An,又首项为a公比为q的等比 2020-08-02 …
已知p:-x2+8x+20≥0,q:x2-2x+1-m2≤0(m>0).(1)若p是q必要不充分已知 2020-12-07 …
设等比数列{an}的公比为q,其前n项之积为Tn,并且满足条件:a1>1,a2016a2017>1, 2020-12-23 …
已知数列{an}的前n项和sn的通项an满足sn=[q/(1-q)]*(an-1)(q是常数且q>0 2021-02-09 …