早教吧作业答案频道 -->数学-->
已知函数f(x)=x^2+aln(1+x)有两个极值点x1,x2,且x1(1-2ln2)/4
题目详情
已知函数f(x)=x^2+aln(1+x)有两个极值点x1,x2,且x1 1.求a的取值范围和f(x)的单调性2.证明:f(2)>(1-2ln2)/4
▼优质解答
答案和解析
①定义域为(-1,+∞)
f'(x)=(2x^2+2x+a)/(x+1)
只需2x^2+2x+a=0在(-1,+∞)上有两个相异的根
需Δ=4-4*2*a>0且对称轴为x=-1/2>-1且f(-1)>0
解得0<a<1/2
解方程2x^2+2x+a=0可得x1=(-1-√1-2a)/2,x2=(-1+√1-2a)/2
又f'(x)在(-1,x1)大于0,在(x1,x2)上f'(x)小于0,在(x2,+∞)上f'(x)大于0
所以f(x)的增区间为(-1,x1)和(x2,+∞),减区间为(x1,x2)
②f(x2)=f((-1+√1-2a)/2))=(1-a-√1-2a)/2+(aln(1+√1-2a))/2
>(1-2ln2)/4(其中0<a<1/2)
f'(x)=(2x^2+2x+a)/(x+1)
只需2x^2+2x+a=0在(-1,+∞)上有两个相异的根
需Δ=4-4*2*a>0且对称轴为x=-1/2>-1且f(-1)>0
解得0<a<1/2
解方程2x^2+2x+a=0可得x1=(-1-√1-2a)/2,x2=(-1+√1-2a)/2
又f'(x)在(-1,x1)大于0,在(x1,x2)上f'(x)小于0,在(x2,+∞)上f'(x)大于0
所以f(x)的增区间为(-1,x1)和(x2,+∞),减区间为(x1,x2)
②f(x2)=f((-1+√1-2a)/2))=(1-a-√1-2a)/2+(aln(1+√1-2a))/2
>(1-2ln2)/4(其中0<a<1/2)
看了已知函数f(x)=x^2+al...的网友还看了以下:
已知定义在R上恒不为0的函数y=f(x),当x>0时,满足f(x)>1,且对于任意的实数x,y都有 2020-06-02 …
f(x)是定义在R上的函数,且对任意实数x,y都有f(x+y)=f(x)+f(y)-1成立,当f( 2020-06-02 …
已知f(x-1)=x^2-4x,求函数f(x),f(2x+1)的解析式令t=x-1,则有:x=t+ 2020-06-17 …
1.设偶函数f(x)在[0,+∞)上为减函数,则不等式f(x)>f(2x+1)的解集是2.已知f( 2020-07-25 …
1指数函数y=(1/5)^x的图象与直线y=x交点的横坐标所在的范围2若a^2>b>a>1,试比较 2020-08-01 …
1.若f(x)是定义在(0,+∝)上的增函数且对一切x〉0,y〉0满足f(x/y)=f(x)-f( 2020-08-03 …
已知函数f(x)的定义域是(0,+∞),当x>1时,f(x)>0,且f(x·y)=f(x)+f(y) 2020-11-07 …
1.定义在R上的函数f(x),对任意的x,y属于R,有f(x+y)+f(x-y)=2f(x)f(y) 2020-11-20 …
函数的定义域为R,f(x)+f(-x)=x²+3x-2f(x)+f(1/x)=2/x²+1分别求出f 2020-12-31 …
已知函数f(x)的定义域为(0,正无穷),当x大于1时,f(x)小于0,且对任意正实数x,y,满足f 2021-01-31 …