早教吧作业答案频道 -->数学-->
若x1,x2,x3.xn属于正实数,求证:x1^x1*x2^x2.*xn^xn>=(x1*x2...*xn)^((x1+x2...+xn)/n)
题目详情
若x1,x2,x3.xn属于正实数,求证:x1^x1*x2^x2.*xn^xn>=(x1*x2...*xn)^((x1+x2...+xn)/n)
▼优质解答
答案和解析
证明:
利用均值不等式a+b≥2√ab,可得
x1^2/(1+x1)+(1+x1)/(n+1)^2≥2√[(1+x1)/(n+1)^2*(x1^2/(1+x1)]=2x1/(n+1)
x2^2/(1+x2)+(1+x2)/(n+1)^2≥2√[1+x2)/(n+1)^2*(x2^2/(1+x2)]=2x2/(n+1)
……………………
xn^2/(1+xn)+(1+xn)/(n+1)^2≥2√[1+xn)/(n+1)^2*(xn^2/(1+xn)]=2xn/(n+1)
以上各不等式相加,可得
x1^2/(1+x1)+x2^2/(1+x2)+……+xn^2/(1+xn)+(x1+x2+……+xn+n)/(n+1)^2
≥2(x1+x2+……+xn)/(n+1)
因为x1+x2+...+xn=1,则不等式整理,可得
x1^2/(1+x1)+x2^2/(1+x2)+……+xn^2/(1+xn)+1/(n+1)≥2/(n+1),即
x1^2/(1+x1)+x2^2/(1+x2)+……+xn^2/(1+xn)≥1/(n+1)
利用均值不等式a+b≥2√ab,可得
x1^2/(1+x1)+(1+x1)/(n+1)^2≥2√[(1+x1)/(n+1)^2*(x1^2/(1+x1)]=2x1/(n+1)
x2^2/(1+x2)+(1+x2)/(n+1)^2≥2√[1+x2)/(n+1)^2*(x2^2/(1+x2)]=2x2/(n+1)
……………………
xn^2/(1+xn)+(1+xn)/(n+1)^2≥2√[1+xn)/(n+1)^2*(xn^2/(1+xn)]=2xn/(n+1)
以上各不等式相加,可得
x1^2/(1+x1)+x2^2/(1+x2)+……+xn^2/(1+xn)+(x1+x2+……+xn+n)/(n+1)^2
≥2(x1+x2+……+xn)/(n+1)
因为x1+x2+...+xn=1,则不等式整理,可得
x1^2/(1+x1)+x2^2/(1+x2)+……+xn^2/(1+xn)+1/(n+1)≥2/(n+1),即
x1^2/(1+x1)+x2^2/(1+x2)+……+xn^2/(1+xn)≥1/(n+1)
看了若x1,x2,x3.xn属于正...的网友还看了以下:
设x1x2属于R,常数a>0,定义运算...设x1x2属于R,常数a>0,定义运算:x1*x2=( 2020-05-13 …
已知关于x的一元二次方程x²+bx+c=x有两个实数根x1.x2,且满足x1>0,x2-x1>1 2020-05-16 …
物体从斜面顶端由静止开始匀加速下滑,最初3s内的位移为x1,最后3s内的位移为x2,若x2-x1= 2020-05-16 …
讨论函数fx=2x+1/x^2在(0,+无穷)上的单调性令X2>X1>0,F(x)=2x+1/x^ 2020-05-17 …
已知x1≠1,x1>0,xn+1=xn(xn^2+3)/(3xn^2+1)(n∈N),求证:数列{ 2020-06-03 …
数列(Xn)满足Xn+1=[Xn-Xn-1],X1=1X2=a(a不等于0a为实数)当{Xn}周期 2020-06-03 …
已知xn是函数f(x)=xn+xn-1+xn-2+…+x-1(x>0,n∈N且n≥2)的零点.(1 2020-07-20 …
k=(y2-y1)/(x2-x1)(x1≠x2)//斜率K中x2,y2是从哪里冒出来的?其中点斜式 2020-08-01 …
有理数x1,x2表示数轴上得到点A1,A2,我们就把x1,x2叫做A1,A2的一维坐标.一般地称| 2020-08-03 …
若关于x的方程x2+2mx+m2+3m-2=0有两个实数根x1、x2,则x1(x2+x1)+x22的 2020-10-31 …