早教吧作业答案频道 -->数学-->
初二的两道数论题······高手进~(饿··我觉得很难)好的追加50分····1.求证:不存在满足等式x²+y²-8z³=6的正整数x,y,z.2.口袋里装着分别写又1,2,3…,2001的小纸片,从袋中任意摸
题目详情
初二的两道数论题······高手进~(饿··我觉得很难)好的追加50分····
1.求证:不存在满足等式x²+y²-8z³=6的正整数x,y,z.
2.口袋里装着分别写又1,2,3…,2001的小纸片,从袋中任意摸出若干个小纸片后,算出纸片上各数的和除以29所得的余数,把余数写在另一张新纸片上放入袋内,经过若干次这样的操作后袋内最后还剩下三个数,其中2各数分别是2000,2001,求第三个数.
饿····能用初二的知识解答吗·````楼下的看不懂—_—|||
1.求证:不存在满足等式x²+y²-8z³=6的正整数x,y,z.
2.口袋里装着分别写又1,2,3…,2001的小纸片,从袋中任意摸出若干个小纸片后,算出纸片上各数的和除以29所得的余数,把余数写在另一张新纸片上放入袋内,经过若干次这样的操作后袋内最后还剩下三个数,其中2各数分别是2000,2001,求第三个数.
饿····能用初二的知识解答吗·````楼下的看不懂—_—|||
▼优质解答
答案和解析
--这个其实是小学数论,你可以放弃了…当然你坚持,我还是可以给你详细写一遍.爪机不给力,中午给你回复,追加分就算了,这题不值1.任何一个完全平方数模8的余数只可能是0,1,4,不信你自己算,这是数论常识.
(8k)^2=64k^2,0
(8k+1)^2=64k^2+16k+1,余1
(8k+2)^2=64k^2+32k+4,余4
(8k+3)^2=64k^2+48k+9,余1
(8k+4)^2=64k^2+64k+16,余0
(8k+5)^2=64k^2+80k+25,余1
(8k+6)^2=64k^2+96k+36,余4
(8k+7)^2=64k^2+112k+49,余1
所以x^2+y^2模8的余数只可能是0,1,2,4,5,不可能是6,更不可能为6+8z^3于是第一题得证.
2.(1+2+……+1999)=1(mod29)
所以第三个数是1
你想,比如说我取2,12,22,2+12+22=36->7,7是余数,可见每次取出后都减去了29的倍数,剩下一个小于29的数,所以,经过多次上述运算,(当然2000,2001没有用过)最终的结果,也就是第三个数,是1~1999的和减去29的倍数,得到的一个余数.(1+2+.+1999)=1999000,除以29的余数为1,所以1为答案!
注:2000与2001没有摸出过,所以身下的数无论顺序,他们最终的余数都是不变的,所以为1.
这已经很具体了.
数学之团成员为你解答
(8k)^2=64k^2,0
(8k+1)^2=64k^2+16k+1,余1
(8k+2)^2=64k^2+32k+4,余4
(8k+3)^2=64k^2+48k+9,余1
(8k+4)^2=64k^2+64k+16,余0
(8k+5)^2=64k^2+80k+25,余1
(8k+6)^2=64k^2+96k+36,余4
(8k+7)^2=64k^2+112k+49,余1
所以x^2+y^2模8的余数只可能是0,1,2,4,5,不可能是6,更不可能为6+8z^3于是第一题得证.
2.(1+2+……+1999)=1(mod29)
所以第三个数是1
你想,比如说我取2,12,22,2+12+22=36->7,7是余数,可见每次取出后都减去了29的倍数,剩下一个小于29的数,所以,经过多次上述运算,(当然2000,2001没有用过)最终的结果,也就是第三个数,是1~1999的和减去29的倍数,得到的一个余数.(1+2+.+1999)=1999000,除以29的余数为1,所以1为答案!
注:2000与2001没有摸出过,所以身下的数无论顺序,他们最终的余数都是不变的,所以为1.
这已经很具体了.
数学之团成员为你解答
看了初二的两道数论题······高...的网友还看了以下:
matlab 删除数组中相同数例如数组 a=[1 1 1 1 3 3 3 3 3 5 5 7 7 2020-05-16 …
解方程:1/(x+4)+1/(x+7)=1/(x+5)+1/(x+6)我是这样写的(2x+11)/ 2020-05-16 …
求函数y=-x^2+4x+2,(x∈[-1,3])的值域谁给我用图像说一说?我不明白的是明明最大值 2020-05-16 …
任何整数的平方的末位数不可能的是1,4,9,02,3,7,84,5,6,11,5,6,9晕.... 2020-05-17 …
求不定积分∫(1-x^6)/(x(1+x^6))dx的积分我就知道第一步分子分母同乘以x^5变成: 2020-08-02 …
一道分式方程一道规律题1.解方程:1/x+5+1/x+8=1/x+6+1/x+7(看一下我做的对不对 2020-10-31 …
1x2x3+2x3x4+3x4x5-4x5x6+5x6x7+6x7x8-7x8x9=?1个6+4个6 2020-10-31 …
小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少1/4!”小亮说:“你要给我1/6,我就比你多 2020-11-10 …
初一数学题,我做了出来,但没把握.1若a是不小于-1又不大于3的数,那么a的相反数是什么样的数呢?( 2020-11-11 …
1,3,6,10,15,21……这些叫作三角形数.图我就不画了,就是1是第一幅,3是第二幅(应该知道 2020-11-20 …