早教吧作业答案频道 -->数学-->
把麦克劳林公式改写为带有拉格朗日余项形式f(x)=1/(1-x),由f^(n+1)阶导(x)=(1+n)!/[(1-x)^(n+2)]得到1/(1-x)=1+x+x^2+...+x^n+[x^(n+1)]/[(1-θx)^(n+2)],0
题目详情
把麦克劳林公式改写为带有拉格朗日余项形式
f(x)=1/(1-x) ,由f^(n+1)阶导 (x) = (1+n)!/[(1-x)^(n+2)] 得到 1/(1-x) = 1+x+x^2 +...+x^n + [x^(n+1)]/[(1-θx)^(n+2)] ,0
f(x)=1/(1-x) ,由f^(n+1)阶导 (x) = (1+n)!/[(1-x)^(n+2)] 得到 1/(1-x) = 1+x+x^2 +...+x^n + [x^(n+1)]/[(1-θx)^(n+2)] ,0
▼优质解答
答案和解析
如果只是Taylor展式,则不需要|x|
看了把麦克劳林公式改写为带有拉格朗...的网友还看了以下:
∫(0,+∞)xe^x/(1+e^x)^2dx,求出来了,但是感觉不对!用定积分先求出了.最后正无 2020-06-12 …
设X≥1,比较因为比较x3与x2-x+1的大小解x-(x-x+1)=x-x+x-1=x(x-1)+ 2020-06-18 …
1.7/x²-1+8/x²-2x=37-9x/x^3-x²-x+12.3/x²+x-2=x/x-1 2020-07-18 …
初一数学问题28.1/a-1+1/a+1-2/a^2-129.3-x/2-x÷(x+2-5/x-2 2020-07-22 …
阅读下列因式分解的过程,再回答所提出的问题:1+x+x(x+1)+x(x+1)2=(1+x)[1+ 2020-08-01 …
阅读下列因式分解的过程,再回答所提出的问题:1+x+x(x+1)+x(x+1)2=(1+x)[1+ 2020-08-03 …
阅读下列因式分解的过程,再回答所提出的问题:1+x+x(x+1)+x(x+1)2=(1+x)[1+ 2020-08-03 …
(1)10y+7=22y-5-3y(2)3.5x-5=0.5x+10-2x(3)7x-2(4-x)= 2020-10-31 …
已知函数f(x)=x+log2x3−x(x∈(0,3))(1)求证:f(x)+f(3-x)为定值.( 2020-11-01 …
W、X、Y、Z是原子序数依次增大的短周期元素.W的最外层电子数是电子层数的2倍.Y是金属,可以和X形 2021-01-05 …