早教吧作业答案频道 -->其他-->
设f(x)是定义在R上的函数,且对任意x,y∈R,均有f(x+y)=f(x)+f(y)+2014成立,若函数g(x)=f(x)+2014x2013有最大值M和最小值m,则M+m=.
题目详情
设f(x)是定义在R上的函数,且对任意x,y∈R,均有f(x+y)=f(x)+f(y)+2014成立,若函数g(x)=f(x)+2014x2013有最大值M和最小值m,则M+m=______.
▼优质解答
答案和解析
∵f(x)是定义在R上的函数,且对任意x,y∈R,均有f(x+y)=f(x)+f(y)+2014成立,
∴取x=y=0,得:f(0)=f(0)+f(0)+2014,f(0)=-2014,
取y=-x,得到:f(0)=f(x)+f(-x)+2014,
∴f(x)+f(-x)=-4028.
记h(x)=f(x)+2014x2013+2014,
则h(-x)+h(x)=[f(-x)+2014(-x)2013+2014]+f(x)+2014x2013+2014
=f(x)+f(-x)+2014x2013-2014x2013+4028
=f(x)+f(-x)+4028
=0,
∴y=h(x)为奇函数.
记h(x)的最大值为A,则最小值为-A.
∴-A≤f(x)+2014x2013+2014≤A,
∴-A-2014≤f(x)+2014x2013≤A-2014,
∵g(x)=f(x)+2014x2013,
∴∴-A-2014≤g(x)≤A-2014,
∵函数g(x)有最大值M和最小值m,
∴M=A-2014,m=-A-2014,
∴M+m=A-2014+(-A-2014)
=-4028.
故答案为:-4028.
∴取x=y=0,得:f(0)=f(0)+f(0)+2014,f(0)=-2014,
取y=-x,得到:f(0)=f(x)+f(-x)+2014,
∴f(x)+f(-x)=-4028.
记h(x)=f(x)+2014x2013+2014,
则h(-x)+h(x)=[f(-x)+2014(-x)2013+2014]+f(x)+2014x2013+2014
=f(x)+f(-x)+2014x2013-2014x2013+4028
=f(x)+f(-x)+4028
=0,
∴y=h(x)为奇函数.
记h(x)的最大值为A,则最小值为-A.
∴-A≤f(x)+2014x2013+2014≤A,
∴-A-2014≤f(x)+2014x2013≤A-2014,
∵g(x)=f(x)+2014x2013,
∴∴-A-2014≤g(x)≤A-2014,
∵函数g(x)有最大值M和最小值m,
∴M=A-2014,m=-A-2014,
∴M+m=A-2014+(-A-2014)
=-4028.
故答案为:-4028.
看了设f(x)是定义在R上的函数,...的网友还看了以下:
已知函数f(x)=m•2x+2•3x,m∈R.(1)当m=-9时,求满足f(x+1)>f(x)的实 2020-06-12 …
数学概念题.come in设函数f(x)的定义域为R,有下列三个命题1若存在常数M,使得对任意X属 2020-06-27 …
某二倍体植物宽叶(M)对窄叶(m)为显性,高茎(H)对矮茎(h)为显性,红花(R)对白花(r)为显 2020-07-07 …
某二倍体植物宽叶(M)对窄叶(m)为显性,高茎(H)对矮茎(h)为显性,红花(R)对白花(r)为显 2020-07-07 …
已知圆C:x²+(y-1)²=5,直线l:mx-y+1-m=0(1):求证:对任意m∈R,直线l已 2020-07-18 …
函数的最值设函数f(x)的定义域为R,则下列四个命题:(1)若存在常数M,使得对于任意的x∈R,有 2020-07-25 …
已知f(θ)=cos^2θ+2msinθ-2m-2,θ∈R.(1)对任意m∈R,求f(θ)的最大值 2020-07-26 …
设复数z=a+i(i是虚数单位,a∈R,a>0),且|z|=10.(Ⅰ)求复数z;(Ⅱ)在复平面内 2020-08-02 …
关于万有引力公式推导的问题推着推着,推到A对B的:F=4πr^2k*m/r^2B对A的:F'=4πr 2020-12-16 …
某元素为m,R的硝酸盐的相对分子质量,R的硫酸盐的相对分子质量为n,则该元素的化合价为多少?()A. 2021-02-01 …