早教吧作业答案频道 -->其他-->
已知数列{an}的前n项和为Sn,且对于任意的n∈N*,恒有Sn=2an-n,设bn=log2(an+1).(1)求证:数列{an+1}是等比数列;(2)求数列{an},{bn}的通项公式an和bn;(3)若cn=2bnan•an+1,证明:c1+c2+…
题目详情
已知数列{an}的前n项和为Sn,且对于任意的n∈N*,恒有Sn=2an-n,设bn=log2(an+1).
(1)求证:数列{an+1}是等比数列;
(2)求数列{an},{bn}的通项公式an和bn;
(3)若cn=
,证明:c1+c2+…+cn<
.
(1)求证:数列{an+1}是等比数列;
(2)求数列{an},{bn}的通项公式an和bn;
(3)若cn=
| 2bn |
| an•an+1 |
| 4 |
| 3 |
▼优质解答
答案和解析
(1)当n=1时,S1=2a1-1得a1=1,
当n≥2时,Sn=2an-n,Sn-1=2an-1-(n-1),
两式相减得:an=2an-2an-1-1,
∴an=2an-1+1,
∴an+1=2(an-1+1)
∴{an+1}是以a1+1=2为首项,2为公比的等比数列.
(2)由(1)得an+1=2•2n−1=2n,
∴an=2n−1,n∈N*
∴bn=log2(an+1)=log22n=n,n∈N*.
(3)证法一:cn=
,cn+1=
由{an}为正项数列,所以{cn}也为正项数列,
从而
=
=
<
=
,
∴数列{cn}递减.
c1+c2+…+cn<c1+
c1+(
)2c1+…+(
)n−1c1=
•c1<
.
证法二:由cn=
当n≥2时,Sn=2an-n,Sn-1=2an-1-(n-1),
两式相减得:an=2an-2an-1-1,
∴an=2an-1+1,
∴an+1=2(an-1+1)
∴{an+1}是以a1+1=2为首项,2为公比的等比数列.
(2)由(1)得an+1=2•2n−1=2n,
∴an=2n−1,n∈N*
∴bn=log2(an+1)=log22n=n,n∈N*.
(3)证法一:cn=
| 2n |
| anan+1 |
| 2n+1 |
| an+1an+2 |
由{an}为正项数列,所以{cn}也为正项数列,
从而
| cn+1 |
| cn |
| 2an |
| an+2 |
| 2(2n−1) |
| 2n+2−1 |
| 2(2n−1) |
| 2n+2−4 |
| 1 |
| 2 |
∴数列{cn}递减.
c1+c2+…+cn<c1+
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
1−(
| ||
1−
|
| 4 |
| 3 |
证法二:由cn=
| 2n | ||||||||||||
| (2
作业帮用户
2017-09-17
举报
![]() |
看了 已知数列{an}的前n项和为...的网友还看了以下:
(2011•浦东新区模拟)定义:sgn(x)=1,x>00,x=0−1,x<0,若已知函数f(x) 2020-05-13 …
定义数列{an}:a1=1,当n≥2时,an=an−1+r,n=2k,k∈N*2an−1,n=2k 2020-05-13 …
等式a=b,c为任意有理数,不一定成立是( )有四个答案:A.a-c=b-c B.a+c=b+c 2020-05-15 …
下列条件能判定△ABC与△A'B'C'相似的有( )(1)∠A=45°,AB=12,AC=15,∠ 2020-05-16 …
已知函数f(x)对任意实数x1,x2,都有f(x1x2)=f(x1)+f(x2)成立原题是:已知函 2020-05-17 …
两道初二反比例函数题(根据问题写解析式)1、已知y=y1+y2,与x成正比例,y2与x成反比例,且 2020-06-03 …
简单的三角恒等式(i)a(bcosC)-ccosB)=b^2-c^2(ii)1/cosB-bcos 2020-06-06 …
一张高难度的初中数学试卷1.已知abc≠0,且a+b+c=a²+b²+c²=2则(1-a)²/bc 2020-06-13 …
A{n│n=2k+1,k∈Z}、B{m│m=2l-1,l∈Z}如果n∈A,那么存在k∈Z,使n=2k 2020-10-31 …
如数轴所示在数上有a=-4、b=-1、c=2三点在abc三点之间任意两点间的距离是�若将点C向左动1 2020-11-18 …
扫描下载二维码