早教吧作业答案频道 -->其他-->
已知数列{an}的前n项和为Sn,且对于任意的n∈N*,恒有Sn=2an-n,设bn=log2(an+1).(1)求证:数列{an+1}是等比数列;(2)求数列{an},{bn}的通项公式an和bn;(3)若cn=2bnan•an+1,证明:c1+c2+…
题目详情
已知数列{an}的前n项和为Sn,且对于任意的n∈N*,恒有Sn=2an-n,设bn=log2(an+1).
(1)求证:数列{an+1}是等比数列;
(2)求数列{an},{bn}的通项公式an和bn;
(3)若cn=
,证明:c1+c2+…+cn<
.
(1)求证:数列{an+1}是等比数列;
(2)求数列{an},{bn}的通项公式an和bn;
(3)若cn=
| 2bn |
| an•an+1 |
| 4 |
| 3 |
▼优质解答
答案和解析
(1)当n=1时,S1=2a1-1得a1=1,
当n≥2时,Sn=2an-n,Sn-1=2an-1-(n-1),
两式相减得:an=2an-2an-1-1,
∴an=2an-1+1,
∴an+1=2(an-1+1)
∴{an+1}是以a1+1=2为首项,2为公比的等比数列.
(2)由(1)得an+1=2•2n−1=2n,
∴an=2n−1,n∈N*
∴bn=log2(an+1)=log22n=n,n∈N*.
(3)证法一:cn=
,cn+1=
由{an}为正项数列,所以{cn}也为正项数列,
从而
=
=
<
=
,
∴数列{cn}递减.
c1+c2+…+cn<c1+
c1+(
)2c1+…+(
)n−1c1=
•c1<
.
证法二:由cn=
当n≥2时,Sn=2an-n,Sn-1=2an-1-(n-1),
两式相减得:an=2an-2an-1-1,
∴an=2an-1+1,
∴an+1=2(an-1+1)
∴{an+1}是以a1+1=2为首项,2为公比的等比数列.
(2)由(1)得an+1=2•2n−1=2n,
∴an=2n−1,n∈N*
∴bn=log2(an+1)=log22n=n,n∈N*.
(3)证法一:cn=
| 2n |
| anan+1 |
| 2n+1 |
| an+1an+2 |
由{an}为正项数列,所以{cn}也为正项数列,
从而
| cn+1 |
| cn |
| 2an |
| an+2 |
| 2(2n−1) |
| 2n+2−1 |
| 2(2n−1) |
| 2n+2−4 |
| 1 |
| 2 |
∴数列{cn}递减.
c1+c2+…+cn<c1+
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
1−(
| ||
1−
|
| 4 |
| 3 |
证法二:由cn=
| 2n | ||||||||||||
| (2
作业帮用户
2017-09-17
举报
![]() |
看了 已知数列{an}的前n项和为...的网友还看了以下:
已知数列a(n)为等比数列,a(4)=16,q=2,数列b(n)前N项和s(n)=1/2*n的平方 2020-05-13 …
已知递增数列{an}满足:a1=1,2a(n+1)=an+a(n+2)(n∈N*),且a1,a2, 2020-05-13 …
已知数列{an}是等差数列.a3=10,a6=22数列{bn}的前n项和为Sn且Sn+1/3bn= 2020-05-13 …
数列1/n*(n+1)的前n项和Sn=(1/1*2)+(1/2*3)+.1/n*(n+1),求Sn 2020-05-14 …
已知正数数列﹛an﹜中,a﹦1,前n项和为Sn,对任意n∈N*.lgSn、lgn、lg(1/a已知 2020-06-06 …
设n∈N*,f(n)=1+12+13+…+1n,计算得f(2)=32,f(4)>2,f(8)>52 2020-07-22 …
哪位大神来设数列{an}的前n项和为Sn,n∈N*,已知a1=1,a2=3/2,a3=5/4,且当 2020-07-23 …
数列{1/(n*n!)}所有项的和(和的极限)是否存在?若存在,是多少?即:1+1/(2*2!)+ 2020-08-02 …
设数列{an}满足a(n+1)=2an+n^2-4n+1.(1)若a1=3,求证:存在f(n)=an 2020-11-19 …
高二数学问题2已知数列{a[n]}中,a1=1,a2=r(r大于0)且数列{a[n]*a[n+1]} 2020-11-29 …
扫描下载二维码