早教吧作业答案频道 -->数学-->
过T(-1,0)做直线l与曲线N:y^2=x交于A、B,在x轴上是否存在E(x,0),使三角形ABE为等边三角形.若存在,求出x,若不存在,请说明理由.
题目详情
过T(-1,0)做直线l与曲线N:y^2=x交于A、B,在x轴上是否存在E(x,0),使三角形ABE为等边三角形.
若存在,求出x,若不存在,请说明理由.
若存在,求出x,若不存在,请说明理由.
▼优质解答
答案和解析
这个题目计算比较复杂啊,以前做过类似的题目,你参考下自己来做吧.
直线过D(-1,0)且与抛物线y^2=4x交与A,B两点,是否x轴上存在一点E,使得三角形ABE为等边三角形.若有求E
由已知:设过点D(-1,0)的直线方程为:y=k(x+1) 联立y=k(x+1) 和y²=4x 消去“x”得k²x²+2(k²-2)x+k²=0 由已知Δ=4(k²-2)²-4(k²)²=-2(2k²-2)>0
∴k²<1 且k不为0,
另设A(x1,y1) B(x2,y2) AB中点为N(x′,y′) 设E(m,0)
由韦达定理:x1+x2=(4-2k²)/k² ,x1x2=1;且y1+y2=4/k ,y1y2=4
∴N(2/k²-1,2/k) 则线段AB的中垂线NE交x由于E,∴直线NE斜率K′=-1/k
∴m=1+2/k²
|AB|²=(x1-x2)²+(y1-y2)²=(x1+x2)²+(y1+y2)²-4x1x2-4y1y2=16/(k²)²-16
|NE|²=4+4/k²
在正三角形中高为边的√3/2,即有:3|AB|²/4=|NE|²
得48(1/(k^4-1)=16(1+1/k²)==>3/k^4-1/k²+4=0
分解得(3/k²-4)(1/k²-1)=0
得k²=3/4 或k²=1(舍去)
即m=1+2/k²=11/3,故满足条件的点E(11/3,0).
直线过D(-1,0)且与抛物线y^2=4x交与A,B两点,是否x轴上存在一点E,使得三角形ABE为等边三角形.若有求E
由已知:设过点D(-1,0)的直线方程为:y=k(x+1) 联立y=k(x+1) 和y²=4x 消去“x”得k²x²+2(k²-2)x+k²=0 由已知Δ=4(k²-2)²-4(k²)²=-2(2k²-2)>0
∴k²<1 且k不为0,
另设A(x1,y1) B(x2,y2) AB中点为N(x′,y′) 设E(m,0)
由韦达定理:x1+x2=(4-2k²)/k² ,x1x2=1;且y1+y2=4/k ,y1y2=4
∴N(2/k²-1,2/k) 则线段AB的中垂线NE交x由于E,∴直线NE斜率K′=-1/k
∴m=1+2/k²
|AB|²=(x1-x2)²+(y1-y2)²=(x1+x2)²+(y1+y2)²-4x1x2-4y1y2=16/(k²)²-16
|NE|²=4+4/k²
在正三角形中高为边的√3/2,即有:3|AB|²/4=|NE|²
得48(1/(k^4-1)=16(1+1/k²)==>3/k^4-1/k²+4=0
分解得(3/k²-4)(1/k²-1)=0
得k²=3/4 或k²=1(舍去)
即m=1+2/k²=11/3,故满足条件的点E(11/3,0).
看了 过T(-1,0)做直线l与曲...的网友还看了以下:
下列各题中,p是q的什么条件?(1)p:a+b=0,q:a*2+b*2=0;(2)p:四边形的对角 2020-04-09 …
已知:在四边形ABCD中,AB=1,E,F,G,H分别是AB,BC,CD,DA上的点,且AE=BF 2020-05-01 …
1.﹙x²-5x+5﹚的x²+4x-60次方=1求x所有值的和.2.函数f(1)=2005,而且f 2020-06-06 …
如图,矩形ABCD的四个顶点在正三角形EFG的边上,已知△EFG的边长为2,记矩形ABCD的面积为 2020-07-09 …
(1)若三角形三条边的长分别是7,10,x,求x的取值范围:(2)若三角形三边的长分别为2,x-1 2020-07-26 …
已知关于x的一元二次方程x的平方-(2k+1)x+4(k-2分之1)=0问等腰三角形的一边长为4, 2020-07-26 …
五边形X五边形=五边形+五边形五边形=什么 2020-08-01 …
已知三角形ABC两边AB、AC的长是关于X的一元二次方程x^2-(2k+1)x+k(k+1)=0的 2020-08-02 …
1.用三种边长相等的正多边形地砖铺地,其顶点拼在一起,刚好能完全铺满地面,已知多边形的边数为x、y、 2020-11-01 …
如图,矩形ABCD的四个顶点在正三角形EFG的边上.已知△EFG的边长为2,记矩形ABCD的面积为s 2020-11-01 …