早教吧作业答案频道 -->数学-->
过T(-1,0)做直线l与曲线N:y^2=x交于A、B,在x轴上是否存在E(x,0),使三角形ABE为等边三角形.若存在,求出x,若不存在,请说明理由.
题目详情
过T(-1,0)做直线l与曲线N:y^2=x交于A、B,在x轴上是否存在E(x,0),使三角形ABE为等边三角形.
若存在,求出x,若不存在,请说明理由.
若存在,求出x,若不存在,请说明理由.
▼优质解答
答案和解析
这个题目计算比较复杂啊,以前做过类似的题目,你参考下自己来做吧.
直线过D(-1,0)且与抛物线y^2=4x交与A,B两点,是否x轴上存在一点E,使得三角形ABE为等边三角形.若有求E
由已知:设过点D(-1,0)的直线方程为:y=k(x+1) 联立y=k(x+1) 和y²=4x 消去“x”得k²x²+2(k²-2)x+k²=0 由已知Δ=4(k²-2)²-4(k²)²=-2(2k²-2)>0
∴k²<1 且k不为0,
另设A(x1,y1) B(x2,y2) AB中点为N(x′,y′) 设E(m,0)
由韦达定理:x1+x2=(4-2k²)/k² ,x1x2=1;且y1+y2=4/k ,y1y2=4
∴N(2/k²-1,2/k) 则线段AB的中垂线NE交x由于E,∴直线NE斜率K′=-1/k
∴m=1+2/k²
|AB|²=(x1-x2)²+(y1-y2)²=(x1+x2)²+(y1+y2)²-4x1x2-4y1y2=16/(k²)²-16
|NE|²=4+4/k²
在正三角形中高为边的√3/2,即有:3|AB|²/4=|NE|²
得48(1/(k^4-1)=16(1+1/k²)==>3/k^4-1/k²+4=0
分解得(3/k²-4)(1/k²-1)=0
得k²=3/4 或k²=1(舍去)
即m=1+2/k²=11/3,故满足条件的点E(11/3,0).
直线过D(-1,0)且与抛物线y^2=4x交与A,B两点,是否x轴上存在一点E,使得三角形ABE为等边三角形.若有求E
由已知:设过点D(-1,0)的直线方程为:y=k(x+1) 联立y=k(x+1) 和y²=4x 消去“x”得k²x²+2(k²-2)x+k²=0 由已知Δ=4(k²-2)²-4(k²)²=-2(2k²-2)>0
∴k²<1 且k不为0,
另设A(x1,y1) B(x2,y2) AB中点为N(x′,y′) 设E(m,0)
由韦达定理:x1+x2=(4-2k²)/k² ,x1x2=1;且y1+y2=4/k ,y1y2=4
∴N(2/k²-1,2/k) 则线段AB的中垂线NE交x由于E,∴直线NE斜率K′=-1/k
∴m=1+2/k²
|AB|²=(x1-x2)²+(y1-y2)²=(x1+x2)²+(y1+y2)²-4x1x2-4y1y2=16/(k²)²-16
|NE|²=4+4/k²
在正三角形中高为边的√3/2,即有:3|AB|²/4=|NE|²
得48(1/(k^4-1)=16(1+1/k²)==>3/k^4-1/k²+4=0
分解得(3/k²-4)(1/k²-1)=0
得k²=3/4 或k²=1(舍去)
即m=1+2/k²=11/3,故满足条件的点E(11/3,0).
看了 过T(-1,0)做直线l与曲...的网友还看了以下:
△ABC中,∠BAC=90°,AB=AC,O为BC中点,∠MON=45°,∠MON的两边交直线AB 2020-04-26 …
小明的叔叔在明珠商场卖衣服,有一天.他对小明说:“没想到数学学不好卖衣服也会赔钱”小明问:“怎么回 2020-05-13 …
应用题现在小明一家要过一座桥,过桥的时候是黑夜,所依必须有灯.已知小明过桥要1秒,小明的弟弟要3秒 2020-05-16 …
物质的量在物质的量中,如何解释n=N/Na,在N=物质的量和NA=阿伏加德罗常数后,对他的概念模糊 2020-06-03 …
不等式和一些综合问题1.若关于x的不等式x^2+1/2x-(1/2)^n≥0对任意n∈N*在x∈( 2020-06-29 …
请问,为什么化学式中CH4,NH3,H2O,HF---C与N写在氢前面,而O,F在氢后为什么化学式 2020-07-15 …
已知一个边长为a的等边三角形,现将其边长n(n为大于2的整数)等分,并以相邻等分点为顶点向外作小等 2020-08-01 …
在小明的爸爸19岁,妈妈18岁的时候,生了小明的哥哥,小明哥哥在15岁那年死去.小明哥哥死去的第二年 2020-11-08 …
如果点M,N在数轴上表示的数分别是m,n,且|m|=2|n|,m,n之间的距离是3.(1)如果都在原 2020-11-20 …
磁场中某点磁感应强度的方向是()A.正电荷在该点的受力方向B.小磁针N极在该点的受力方向C.运动电荷 2021-01-08 …