早教吧作业答案频道 -->数学-->
(2011•普陀区三模)如图,已知半径为r的圆M的内接四边形ABCD的对角线AC和BD相互垂直且交点为P.(1)若四边形ABCD中的一条对角线AC的长度为d(0<d<2r),试求:四边形ABCD面积的最大值;
题目详情
(2011•普陀区三模)如图,已知半径为r的圆M的内接四边形ABCD的对角线AC和BD相互垂直且交点为P.

(1)若四边形ABCD中的一条对角线AC的长度为d(0<d<2r),试求:四边形ABCD面积的最大值;
(2)试探究:当点P运动到什么位置时,四边形ABCD的面积取得最大值,最大值为多少?
(3)对于之前小题的研究结论,我们可以将其类比到椭圆的情形.如图2,设平面直角坐标系中,已知椭圆Γ:
+
=1(a>b>0)的内接四边形ABCD的对角线AC和BD相互垂直且交于点P.试提出一个由类比获得的猜想,并尝试给予证明或反例否定.

(1)若四边形ABCD中的一条对角线AC的长度为d(0<d<2r),试求:四边形ABCD面积的最大值;
(2)试探究:当点P运动到什么位置时,四边形ABCD的面积取得最大值,最大值为多少?
(3)对于之前小题的研究结论,我们可以将其类比到椭圆的情形.如图2,设平面直角坐标系中,已知椭圆Γ:
x2 |
a2 |
y2 |
b2 |
▼优质解答
答案和解析
(1)因为对角线互相垂直的四边形ABCD面积S=
,
而由于|AC|=d为定长,
则当|BD|最大时,四边形ABCD面积S取得最大值.由圆的性质,垂直于AC的弦中,直径最长,
故当且仅当BD过圆心M时,四边形ABCD面积S取得最大值,最大值为dr.
(2)由题意,不难发现,当点P运动到与圆心M重合时,对角线AC和BD的长同时取得最大值|AC|=|BD|=2r,
所以此时四边形ABCD面积S取得最大值,最大值为2r2.
(3)类比猜想1:若对角线互相垂直的椭圆内接四边形ABCD中的一条对角线长确定时,当且仅当另一条对角线通过椭圆中心时,该椭圆内接四边形面积最大.
类比猜想2:当点P在椭圆中心时,对角线互相垂直的椭圆内接四边形ABCD的面积最大.
以上两个均为正确的猜想,要证明以上两个猜想,都需先证:椭圆内的平行弦中,过椭圆中心的弦长最大.
证:设椭圆的方程为
+
=1(a>b>0),平行弦MN的方程为y=kx+m,
联立可得b2x2+a2(kx+m)2-a2b2=0⇒(b2+a2k2)x2+2kma2x+m2a2-a2b2=0
不妨设M(x1,y1)、N(x2,y2),
则|MN|=
|x1−x2|
=
•
=
|AC|•|BD| |
2 |
而由于|AC|=d为定长,
则当|BD|最大时,四边形ABCD面积S取得最大值.由圆的性质,垂直于AC的弦中,直径最长,
故当且仅当BD过圆心M时,四边形ABCD面积S取得最大值,最大值为dr.
(2)由题意,不难发现,当点P运动到与圆心M重合时,对角线AC和BD的长同时取得最大值|AC|=|BD|=2r,
所以此时四边形ABCD面积S取得最大值,最大值为2r2.
(3)类比猜想1:若对角线互相垂直的椭圆内接四边形ABCD中的一条对角线长确定时,当且仅当另一条对角线通过椭圆中心时,该椭圆内接四边形面积最大.
类比猜想2:当点P在椭圆中心时,对角线互相垂直的椭圆内接四边形ABCD的面积最大.
以上两个均为正确的猜想,要证明以上两个猜想,都需先证:椭圆内的平行弦中,过椭圆中心的弦长最大.
证:设椭圆的方程为
x2 |
a2 |
y2 |
b2 |
联立可得b2x2+a2(kx+m)2-a2b2=0⇒(b2+a2k2)x2+2kma2x+m2a2-a2b2=0
不妨设M(x1,y1)、N(x2,y2),
则|MN|=
1+k2 |
=
1+k2 |
(
|
=
|
看了 (2011•普陀区三模)如图...的网友还看了以下:
如图,正比例函数y=2x与反比例函数y=kx(k>0)的图象相交于A、C两点,过点A作AD垂直x轴 2020-04-08 …
如图一带-Q电荷量的点电荷A,与一块很大的接地金属板MN组成一系统,A到板垂直距离为d,A到板中垂 2020-05-13 …
读“大气的垂直分层图”,回答下列问题。(10分)(1)大气垂直分层的依据是。(2)A层是层,B层是 2020-07-16 …
如图所示,AB垂直BC,DC垂直BC,垂足分别为点B,C{1}当AB=4,DC=1,BC=4时,在 2020-07-24 …
导数求切线问题设函数Y=X平方-2X+2的图像为C1,函数Y=-X平方+AX+B的图像是C2,已知 2020-07-31 …
A,B两点是反比例函数Y=K/X(K>0)在第一象限内的图像上的点,过点A作AC垂直X轴,AE垂直 2020-08-01 …
读大气垂直分层示意图,完成下列各题。1.图中正确表示大气层气温垂直变化的曲线是:2.对短波通信具有重 2020-11-26 …
下图为某河流水系图,读图完成下列问题。1.绘制XY地形剖面图,为突出图中沿线的地势起伏状况,绘图时应 2020-11-27 …
下图示意大气垂直分层,读图回答(1)——(3)题。(1)图中正确表示大气层气温垂直变化的曲线是[]A 2020-12-15 …
如图所示,电流从A点分两路通过对称的半圆支路汇合于B点,在圆环中心O处的磁感应强度为()A.最大,垂 2021-01-13 …