早教吧作业答案频道 -->数学-->
三角形ABC的一个外角ACD的角平分线CE与角ABC的角平分线相交于E,角CEB=40度,求角CAE的度数
题目详情
三角形ABC的一个外角ACD的角平分线CE与角ABC的角平分线相交于E,角CEB=40度,求角CAE的度数
▼优质解答
答案和解析
设BE与AC的交点为D
CE是外角的平分线
则 ∠ACE=(180°-∠ACB)/2=90°-∠ACB/2,BC/CD=BE/DE(三角形外角平分线定理)
而 ∠CBE+∠CEB+∠BCE=180°
即 ∠CBE+∠CEB+∠BCA+∠ACE=180°
而 ∠CEB=40°
即 ∠CBE+40°+∠BCA+90°-∠ACB/2=180°
即 ∠CBE+∠BCA/2=50°
而 BE是角B的平分线
则 ∠CBE=∠ABE=∠CBA/2,AB/BC=AD/DC(三角形内角平分线定理)
故有 ∠CBA/2+∠BCA/2=50°
即 ∠CBA+∠BCA=100°
所以 ∠BAC=80°
因为 BC/CD=BE/DE,AB/BC=AD/DC
所以 AB/AD=BE/DE
即 AE为角A的外角平分线
即有 2∠EAC+∠BAC=180°
故 ∠EAC=50°
CE是外角的平分线
则 ∠ACE=(180°-∠ACB)/2=90°-∠ACB/2,BC/CD=BE/DE(三角形外角平分线定理)
而 ∠CBE+∠CEB+∠BCE=180°
即 ∠CBE+∠CEB+∠BCA+∠ACE=180°
而 ∠CEB=40°
即 ∠CBE+40°+∠BCA+90°-∠ACB/2=180°
即 ∠CBE+∠BCA/2=50°
而 BE是角B的平分线
则 ∠CBE=∠ABE=∠CBA/2,AB/BC=AD/DC(三角形内角平分线定理)
故有 ∠CBA/2+∠BCA/2=50°
即 ∠CBA+∠BCA=100°
所以 ∠BAC=80°
因为 BC/CD=BE/DE,AB/BC=AD/DC
所以 AB/AD=BE/DE
即 AE为角A的外角平分线
即有 2∠EAC+∠BAC=180°
故 ∠EAC=50°
看了 三角形ABC的一个外角ACD...的网友还看了以下:
下列说法中正确的是()A.乙烯中C=C的键能是乙烷中C-C的键能的2倍B.氮气分子中含有1个σ键和 2020-05-17 …
现有A,B,C,D四种物质,已知A,B为黑色粉末,C,D为无色气体,A,B在高温下作用能生成D,A 2020-05-17 …
若a、b互为倒数,c、d互为相反数且,|m|=3,呢么m²分之ab+(c+d)m的平方的值为多少上 2020-06-03 …
1.如是B分之A>0,C分之B>0,那么AC()0;如果B分之A<0,C分之B<0,那么AC()0 2020-07-09 …
A,B,C,D四个数的和为59,问A^2+B^2+C^2+D^2,A^3+B^3+C^3+D^3, 2020-07-28 …
a,b,c,d都是不同的质数.甲数=a*b*c,乙数=a*b*c*d,则().a.甲是乙的倍数b. 2020-07-31 …
若a、b互为倒数,c、d互为相反数|m|=2,(c+d)*a/b+3ab-m²=-2³-|-3|=, 2020-11-20 …
“我们可以得到A和B分别与C、D、E之间的关系”这句话用英语怎么表达“我们可以得到A和B分别与C、D 2020-12-25 …
若a与b互为相反数,c与d互为倒数,x=4(a-2)-(a-3b),y=c²d-(c-1),求代数式 2020-12-31 …
若a与b互为相反数,c与d互为倒数,x=4(a-2)-(a-3b),y=c²d-(c-1),求代数式 2020-12-31 …