早教吧作业答案频道 -->数学-->
如何证明二项式定理?
题目详情
如何证明二项式定理?
▼优质解答
答案和解析
二项式定理,又称牛顿二项式定理,由艾萨克·牛顿于1664、1665年间提出.
此定理指出:
其中,二项式系数指...
等号右边的多项式叫做二项展开式.
二项展开式的通项公式为:...
其i项系数可表示为:...,即n取i的组合数目.
因此系数亦可表示为帕斯卡三角形(Pascal's Triangle)
二项式定理(Binomial Theorem)是指(a+b)n在n为正整数时的展开式.(a+b)n的系数表为:
1 n=0
1 1 n=1
1 2 1 n=2
1 3 3 1 n=3
1 4 6 4 1 n=4
1 5 10 10 5 1 n=5
1 6 15 20 15 6 1 n=6
…………………………………………………………
(左右两端为1,其他数字等于正上方的两个数字之和)
在我国被称为「贾宪三角」或「杨辉三角」,一般认为是北宋数学家贾宪所首创.它记载于杨辉的《详解九章算法》(1261)之中.在阿拉伯数学家卡西的著作《算术之钥》(1427)中也给出了一个二项式定理系数表,他所用的计算方法与贾宪的完全相同.在欧洲,德国数学家阿皮安努斯在他1527年出版的算术书的封面上刻有此图.但一般却称之为「帕斯卡三角形」,因为帕斯卡在1654年也发现了这个结果.无论如何,二项式定理的发现,在我国比在欧洲至少要早300年.
1665年,牛顿把二项式定理推广到n为分数与负数的情形,给出了的展开式.
二项式定理在组合理论、开高次方、高阶等差数列求和,以及差分法中有广泛的应用.
1.熟练掌握二项式定理和通项公式,掌握杨辉三角的结构规律
二项式定理: 叫二项式系数(0≤r≤n).通项用Tr+1表示,为展开式的第r+1项,且,注意项的系数和二项式系数的区别.
2.掌握二项式系数的两条性质和几个常用的组合恒等式.
①对称性:
②增减性和最大值:先增后减
n为偶数时,中间一项的二项式系数最大,为:Tn/2+1
n为奇数时,中间两项的二项式系数相等且最大,为:T(n+1)/2+1
3.二项式从左到右使用为展开;从右到左使用为化简,从而可用来求和或证明.掌握“赋值法”这种利用恒等式解决问题的思想.
证明:n个(a+b)相乘,是从(a+b)中取一个字母a或b的积.所以(a+b)^n的展开式中每一项都是)a^k*b^(n-k)的形式.对于每一个a^k*b^(n-k),是由k个(a+b)选了a,(a的系数为n个中取k个的组合数(就是那个C右上角一个数,右下角一个数)).(n-k)个(a+b)选了b得到的(b的系数同理).由此得到二项式定理.
二项式系数之和:
2的n次方
而且展开式中奇数项二项式系数之和等于偶数项二项式系数之和等于2的(n-1)次方
二项式定理的推广:
二项式定理推广到指数为非自然数的情况:
形式为 推广公式
注意:|x|
此定理指出:
其中,二项式系数指...
等号右边的多项式叫做二项展开式.
二项展开式的通项公式为:...
其i项系数可表示为:...,即n取i的组合数目.
因此系数亦可表示为帕斯卡三角形(Pascal's Triangle)
二项式定理(Binomial Theorem)是指(a+b)n在n为正整数时的展开式.(a+b)n的系数表为:
1 n=0
1 1 n=1
1 2 1 n=2
1 3 3 1 n=3
1 4 6 4 1 n=4
1 5 10 10 5 1 n=5
1 6 15 20 15 6 1 n=6
…………………………………………………………
(左右两端为1,其他数字等于正上方的两个数字之和)
在我国被称为「贾宪三角」或「杨辉三角」,一般认为是北宋数学家贾宪所首创.它记载于杨辉的《详解九章算法》(1261)之中.在阿拉伯数学家卡西的著作《算术之钥》(1427)中也给出了一个二项式定理系数表,他所用的计算方法与贾宪的完全相同.在欧洲,德国数学家阿皮安努斯在他1527年出版的算术书的封面上刻有此图.但一般却称之为「帕斯卡三角形」,因为帕斯卡在1654年也发现了这个结果.无论如何,二项式定理的发现,在我国比在欧洲至少要早300年.
1665年,牛顿把二项式定理推广到n为分数与负数的情形,给出了的展开式.
二项式定理在组合理论、开高次方、高阶等差数列求和,以及差分法中有广泛的应用.
1.熟练掌握二项式定理和通项公式,掌握杨辉三角的结构规律
二项式定理: 叫二项式系数(0≤r≤n).通项用Tr+1表示,为展开式的第r+1项,且,注意项的系数和二项式系数的区别.
2.掌握二项式系数的两条性质和几个常用的组合恒等式.
①对称性:
②增减性和最大值:先增后减
n为偶数时,中间一项的二项式系数最大,为:Tn/2+1
n为奇数时,中间两项的二项式系数相等且最大,为:T(n+1)/2+1
3.二项式从左到右使用为展开;从右到左使用为化简,从而可用来求和或证明.掌握“赋值法”这种利用恒等式解决问题的思想.
证明:n个(a+b)相乘,是从(a+b)中取一个字母a或b的积.所以(a+b)^n的展开式中每一项都是)a^k*b^(n-k)的形式.对于每一个a^k*b^(n-k),是由k个(a+b)选了a,(a的系数为n个中取k个的组合数(就是那个C右上角一个数,右下角一个数)).(n-k)个(a+b)选了b得到的(b的系数同理).由此得到二项式定理.
二项式系数之和:
2的n次方
而且展开式中奇数项二项式系数之和等于偶数项二项式系数之和等于2的(n-1)次方
二项式定理的推广:
二项式定理推广到指数为非自然数的情况:
形式为 推广公式
注意:|x|
看了 如何证明二项式定理?...的网友还看了以下:
物理公式在确定物理量关系的同时,也确定了物理量的单位关系.下面给出的关系式中,l是长度,v是速度, 2020-04-11 …
学习物理要正确理解物理规律和公式的内涵.你认为下列理解正确的是()A.根据库仑定律公式F=kq1q 2020-05-13 …
二难推理破坏式的主要逻辑机理,是运用假言推理的【否定后件】式,为什么?为什么填否定后件式? 2020-05-16 …
如何锁定EXCEL表格中的公式在EXCEL表格设定公式时,如果不小心修改了却不知道,那么查找起来很 2020-05-16 …
高锰酸钾法测定COD公式的由来高锰酸钾法测定COD公式是这样的(未经稀释):COD(O2,mg/L 2020-05-17 …
n次多项式f(x)如果满足f(a)=0,则该多项式一定能因式分解,且x-a是其中一个因式,利用此原 2020-07-26 …
公理性定义是什么?请举例说明.如题,定义分为描述性定义和公理性定义.公理性定义到底是什么样的定义形 2020-07-30 …
提取公因式小华认为在多项式2x²+3x+1中一定有因式(x+1),他是这样想的:2x²+3x+1= 2020-08-01 …
在牛顿第二定律公式中,谁是尚未规定单位的物理量确定各类公式中的比例系数有两种方法:(1)如果式中各 2020-08-02 …
下列有关判断的说法中,错误的是:()A.判断是对事物情况有所断定的思维形式B.运用概念作出判断是认识 2021-01-15 …
相关搜索:如何证明二项式定理