早教吧 育儿知识 作业答案 考试题库 百科 知识分享

数学几何在平面直角坐标系中,点A的坐标为(9,0),直线x=3/4x+12与x轴、y轴分别交于C、B,点P是线段CB上的一动点(不与B、C重合)联结AP1)求tan∠BCA的值2)设tan∠PAC=t,试求线段CP的长(用含t的

题目详情
数学几何
在平面直角坐标系中,点A的坐标为(9,0),直线x=3/4x+12与x轴、y轴分别交于C、B,点P是线段CB上的一动点(不与B、C重合)联结AP1)求tan∠BCA的值2)设tan∠PAC=t,试求线段CP的长(用含t的代数式表示)3)当△ABP与△AOB相似时,请直接写出tan∠PAC的值
▼优质解答
答案和解析
⑴tan∠BCA=OB∶OC=12∶9=4/3
⑵过P作PD⊥X轴于D,则PD∶AD=tan∠PAC=t,∴AD=PD/t,
∵PD∶CD=tan∠BCA=4/3,∴CD=3/4PD,而AD+CD=OA+OC=18,
∴PD/t+3/4PD=18,∴PD=(72t)/(4+3t)
又从tan∠BCA=4/3易得sin∠BCA=4/5,而sin∠BCA=PD/PC,
∴PC=PD∶4/5=5PD/4=90t/(4+3t)
⑶若相似,则∠APC=90°,所以△CPD∽△CPA,PC^2=CD·CA
CD=3/4PD=54t/(4+3t),AC=18
代入整理得:25t=9t+12,t=3/4,即tan∠PAC=3/4