早教吧作业答案频道 -->数学-->
求xarcsinx不定积分
题目详情
求xarcsinx不定积分
▼优质解答
答案和解析
∫xarcsinxdx=1/2∫arcsinxdx²
=1/2{arcsinx*x²-∫x²d(arcsinx)}
=1/2{x²*arcsinx-∫x²/√(1-x²)dx}
=1/2*x²*arcsinx+x/4*√(1-x²)-1/4*arcsinx+C
其中∫x²/√(1-x²)dx 是有公式,
设sinu=x,tanx=x/√(1-x²),x=arcsinu,dx=1/(√(1-u²))du=1/cosu du
∫x²/√(1-x²)dx =∫sin²u/cosu * 1/cousu du=∫sin²udu
=-∫sinud(cosu)
=-sinu*cosu+∫cosud(sinu)
=-sinu*cosu+∫(1-sin²u)du=-sinu*cosu+u-∫sin²udu
得
2∫sin²udu=-sinu*cosu+u
∫sin²udu=-1/2*sinu*cosu+u/2=u/2-1/4sin2u
=1/2*arcsinx-1/4 * (2tanu/(1+tan²u))
=1/2*arcsinx-1/2*(x/√(1-x²)/(1+x²/(1-x²)))
=1/2*arcsinx-x/2*√(1-x²)+C
=1/2{arcsinx*x²-∫x²d(arcsinx)}
=1/2{x²*arcsinx-∫x²/√(1-x²)dx}
=1/2*x²*arcsinx+x/4*√(1-x²)-1/4*arcsinx+C
其中∫x²/√(1-x²)dx 是有公式,
设sinu=x,tanx=x/√(1-x²),x=arcsinu,dx=1/(√(1-u²))du=1/cosu du
∫x²/√(1-x²)dx =∫sin²u/cosu * 1/cousu du=∫sin²udu
=-∫sinud(cosu)
=-sinu*cosu+∫cosud(sinu)
=-sinu*cosu+∫(1-sin²u)du=-sinu*cosu+u-∫sin²udu
得
2∫sin²udu=-sinu*cosu+u
∫sin²udu=-1/2*sinu*cosu+u/2=u/2-1/4sin2u
=1/2*arcsinx-1/4 * (2tanu/(1+tan²u))
=1/2*arcsinx-1/2*(x/√(1-x²)/(1+x²/(1-x²)))
=1/2*arcsinx-x/2*√(1-x²)+C
看了 求xarcsinx不定积分...的网友还看了以下:
设A为n阶矩阵,证明:R(A+I)+R(A-I)>=n已知R(A)=R(kA),k≠0;R(A+B 2020-05-14 …
集合 A={x|ax=1},B={x|x²-1=0},若A真包含于B 那么a= A={x|(a²- 2020-05-14 …
1.设a属於R,且x的二次方程式(1+i)x^2-(a+3i)x+(4+2i)=0有一实根,则(1 2020-05-21 …
高一数学题目..不会..求解1.已知U=R,A{X∈R|1<X<4}B={X∈R|X≤-1或X≥3 2020-05-23 …
1.已知复数z1=3+4i,z2=x-i(x∈R)且|z1+z2|=5求x2.(x+y)^2i-6 2020-06-05 …
选择元音字母在单词中发音不同的一项.1;A:h(a)nd;B:f(a)ce;C:(a)pple.2 2020-06-17 …
重组字母为单词e,e,r,w,he,e,r,t,he,e,se,a,sw,m,s,ir,t,p,i 2020-07-09 …
一道中等难度的三角函数题(快点啊···)定义在R上的函数f(x)满足f(x+2)=-f(x),且当 2020-07-30 …
1.Z=(2X^2+5X-3)+(X^2-2X+2)i,X∈R则正确的是?AZ的对应点在Z的第一象 2020-08-01 …
有关区间的定义问题让我们回忆实数集合R中区间的精确定义:R的子集E称为一个区间,如果它至少包含两个点 2020-11-20 …
相关搜索:求xarcsinx不定积分