早教吧作业答案频道 -->数学-->
f(x)在开区间(a,b)上连续,且limx→a+=-∞,limx→b-=-∞,证明:f(x)在开区间(a,b)内有最大值.原题这里错了,应该是这样:limx→a+f(x)=-∞,limx→b-f(x)=-∞
题目详情
f(x)在开区间(a,b)上连续,且lim x→a+ = -∞ ,lim x→b- = -∞,证明:f(x)在开区间(a,b)内有最大值.
原题这里错了,应该是这样:lim x→a+f(x) = -∞ ,lim x→b-f(x) = -∞
原题这里错了,应该是这样:lim x→a+f(x) = -∞ ,lim x→b-f(x) = -∞
▼优质解答
答案和解析
用反证法
假设f(x)在开区间(a,b)内没有最大值
即存在一点x0,aA
因为f(x)在开区间(a,b)上连续,lim x→a+f(x) = -∞ ,lim x→b-f(x) = -∞
所以在(a,x1]中存在数a1、a2、……、an,使得f(a1)=f(a2)=……=f(an)=A,在[x1,b)中存在数b1、b2、……、bm,使得f(b1)=f(b2)=……=f(bm)=A,
设a0=min{a1、a2、……、an},b0=max{b1、b2、……、bm}
则在[a0,b0]这个闭区间上f(x)连续且没有最大值,就是无界.这和在闭区间上的连续的函数在该区间上有界且一定能取得它的最大值和最小值.矛盾
假设f(x)在开区间(a,b)内没有最大值
即存在一点x0,aA
因为f(x)在开区间(a,b)上连续,lim x→a+f(x) = -∞ ,lim x→b-f(x) = -∞
所以在(a,x1]中存在数a1、a2、……、an,使得f(a1)=f(a2)=……=f(an)=A,在[x1,b)中存在数b1、b2、……、bm,使得f(b1)=f(b2)=……=f(bm)=A,
设a0=min{a1、a2、……、an},b0=max{b1、b2、……、bm}
则在[a0,b0]这个闭区间上f(x)连续且没有最大值,就是无界.这和在闭区间上的连续的函数在该区间上有界且一定能取得它的最大值和最小值.矛盾
看了 f(x)在开区间(a,b)上...的网友还看了以下:
-x(a-x)(x-b)-mn(a-x)(b-x)的公因式是什么.不.选择里没有A.x(a-x)B 2020-04-08 …
关于x的方程x-1/3[x-1/3(x-b)]=1/9(x+b)的解为x=a,而x=8又是关于x的 2020-05-20 …
集合题不懂,设Z为整数集合,A={x|x∈Z,x>x},B={x|x∈Z,x≠x},则(A)A=B 2020-06-18 …
1.已知集合A={y|y=|x|,x∈R},B={y|y=2-x^,x∈R},求A∩B?2.已知集 2020-07-20 …
∫1/((x-a)(x-b))dx=(ln|x-a|-ln|x-b|)/(a-b)+C如果((x- 2020-07-29 …
提公因式(过程)4(x-2)+2b(2-x)7(a-1)+x(a-1)2(y-x)+3(x-y)4 2020-08-01 …
设集合A={x|a«X«负1或x»1},B={x|a«X«b}.设集合A={x|a«X«负1或x» 2020-08-02 …
抽象函数f(a-x)+f(x+b)=2c,求对称中心.f(a-x)+f(x+b)=2cf(x+b) 2020-08-02 …
因式分解初一!50分哦!(1)由(x+a)(x+b)=x^2+(a+b)x+ab,可得x^2+(a+ 2020-10-31 …
(x+y)²+2(y-x)因式分解怎么弄我这还有几道题(x+y)²-(x+y)(x-z)+(x+y) 2020-11-01 …