中心在原点的椭圆C1与双曲线C2具有相同的焦点,F1(-c,0),F2(c,0),P为C1与C2在第一象限的交点,|PF1|=|F1F2|且|PF2|=5,若椭圆C1的离心率e1∈(35,23),则双曲线的离心率e2的范围是()
中心在原点的椭圆C1与双曲线C2具有相同的焦点,F1(-c,0),F2(c,0),P为C1与C2在第一象限的交点,|PF1|=|F1F2|且|PF2|=5,若椭圆C1的离心率e1∈(
,3 5
),则双曲线的离心率e2的范围是( )2 3
A. (
,3 2
)5 3
B. (
,2)5 3
C. (2,3)
D. (
,3)3 2
设椭圆的方程为| x2 |
| a2 |
| y2 |
| b2 |
其离心率为e1,
双曲线的方程为
| x2 |
| m2 |
| y2 |
| n2 |
|F1F2|=2c,
∵有公共焦点的椭圆与双曲线在第一象限的交点为P,
△PF1F2是以PF2为底边的等腰三角形,
∴在椭圆中,|PF1|+|PF2|=2a,而|PF1|=|F1F2|=2c,
∴|PF2|=2a-2c,①
同理,在该双曲线中,|PF2|=2c-2m;②
由①②可得m=2c-a.
∵e1=
| c |
| a |
| 3 |
| 5 |
| 2 |
| 3 |
∴
| 3 |
| 2 |
| 1 |
| e1 |
| 5 |
| 3 |
又e2=
| c |
| m |
| c |
| 2c-a |
| e1 |
| 2e1-1 |
| 1 | ||
2-
|
故选:C.
1,设F是椭圆x^2/36+y^2/100=1的上焦点,且椭圆上恰有5个不同的点Pi,(i=1,2 2020-06-04 …
1.设点P是双曲线x^2-y^2/3=1上一点,焦点F(2,0),点A(3,2),使|PA|+1/ 2020-06-16 …
求1+2+2^2+2^3+2^4+…+2^2014的值.设S=1+2+2^2+2^3+2^4+…+ 2020-07-09 …
已知椭圆C1:已知椭圆C1:x^2/a^2+y^2/b^2=1(a>b>0)的长轴为根号2,离心率 2020-07-30 …
双曲线4x^2-y^2=1,(1)求以该双曲线的实轴和虚轴分别为短轴和长轴的椭圆方程.(2)证明当 2020-07-30 …
xyz=1,x+y+z=2,x^2+y^2+z^2=3,求x,y,z我解:xy=1/z,x+y=2- 2020-10-31 …
若双曲线x^2/4-y^2/5=1与椭圆x^2/z^2+y^2/16=1有公共焦点,且z>0,则z= 2020-10-31 …
观察下列各式然后回答问题:1-1/2^2=1/2*2/3,1-1/3^2+2/3*4/3,1-1/4 2020-11-01 …
已知a,b属于正实数a^2+b^2/2=1求y=a√(1+b^2)的最大值参考书上是用y^2=[a√ 2020-12-31 …
这些题怎么数学解1已知(x+m)^2(x^2-2x+3)+x(x+1)中不含x^2项求m的值2已知a 2020-12-31 …