早教吧作业答案频道 -->数学-->
如图,棱柱ABCD-A1B1C1D1的底面ABCD为菱形,平面AA1C1C⊥平面ABCD.(1)证明:BD⊥AA1;(2)证明:平面AB1C∥平面DA1C1(3)在直线CC1上是否存在点P,使BP∥平面DA1C1?若存在,求出点P的位置;若
题目详情
如图,棱柱ABCD-A1B1C1D1的底面ABCD为菱形,平面AA1C1C⊥平面ABCD.

(1)证明:BD⊥AA1;
(2)证明:平面AB1C∥平面DA1C1
(3)在直线CC1上是否存在点P,使BP∥平面DA1C1?若存在,求出点P的位置;若不存在,说明理由.

(1)证明:BD⊥AA1;
(2)证明:平面AB1C∥平面DA1C1
(3)在直线CC1上是否存在点P,使BP∥平面DA1C1?若存在,求出点P的位置;若不存在,说明理由.
▼优质解答
答案和解析
证明:(1)连BD,
∵面ABCD为菱形,∴BD⊥AC
因为平面AA1C1C⊥平面ABCD,平面AA1C1C∩平面ABCD=AC,
所以BD⊥平面AA1C1C,
又因为AA1⊂平面AA1C1C,
所以BD⊥AA1
(2)连AB1,B1C,由棱柱ABCD-A1B1C1D1的性质知:AB1∥DC1,AD∥B1C,AB1∩B1C=B1,A1D∩DC1=D,
所以由面面平行的判定定理知:平面AB1C∥平面DA1C1
(3)存在这样的点P,
因为A1B1∥AB∥DC,
所以四边形A1B1CD为平行四边形.
所以A1D∥B1C,
在C1C的延长线上取点P,使C1C=CP,连接BP,
因为B1B∥CC1,
所以BB1∥CP,
所以四边形BB1CP为平行四边形,即BP∥B1C,
所以BP∥A1D,
所以BP∥平面DA1C1,
所以在直线CC1上是否存在点P,使BP∥平面DA1C1.
∵面ABCD为菱形,∴BD⊥AC
因为平面AA1C1C⊥平面ABCD,平面AA1C1C∩平面ABCD=AC,
所以BD⊥平面AA1C1C,
又因为AA1⊂平面AA1C1C,
所以BD⊥AA1
(2)连AB1,B1C,由棱柱ABCD-A1B1C1D1的性质知:AB1∥DC1,AD∥B1C,AB1∩B1C=B1,A1D∩DC1=D,
所以由面面平行的判定定理知:平面AB1C∥平面DA1C1
(3)存在这样的点P,
因为A1B1∥AB∥DC,
所以四边形A1B1CD为平行四边形.
所以A1D∥B1C,
在C1C的延长线上取点P,使C1C=CP,连接BP,
因为B1B∥CC1,
所以BB1∥CP,
所以四边形BB1CP为平行四边形,即BP∥B1C,
所以BP∥A1D,
所以BP∥平面DA1C1,
所以在直线CC1上是否存在点P,使BP∥平面DA1C1.
看了 如图,棱柱ABCD-A1B1...的网友还看了以下:
RT△ABO中,顶点A是双曲线y=k/x与直线y=-x+(k+1)在第四象限的交点,AB垂直x轴与 2020-05-15 …
高中数学判断对错①若点A、B、C、D共面,点A、B、C、E共面,则A、B、C、D、E共面②若直线a 2020-06-11 …
已知如图,在平面直角坐标系中,点O是坐标原点,矩形OABC的顶点B在第一象限,点A,C的坐标分别为 2020-06-14 …
2、在坐标平面内描出点A(2,0),B(4,0),C(-1,0),D(-3,0).¬(1)分别求出 2020-06-25 …
如图,在平面直角坐标系中,∠ACB=90°,点A,C的坐标分别为A(-12,0),C(4,0),s 2020-07-17 …
已知平面α‖平面β,P∈α,P不∈β,过点P的两条直线交α,β于A.B.C.D四点,A.C∈α,B 2020-07-26 …
如图所示,小球从a点抛出时具有300J的机械能,……如图所示,小球从a点抛出时具有300J的机械能 2020-07-31 …
如图所示滑雪者从高H的山坡上A点由静止下滑,到B点后又在水平雪面上滑行,最后停在C点,A,C两点的水 2020-10-30 …
平面a平行平面b,点A,C在平面a内,点B,D在平面b内,直线AB与直线CD相交于点s,设AS=18 2020-11-08 …
在平面直角坐标系中,O为原点,四边形ABCD为矩形,点A,C坐标分别为急,有悬赏!在平面直角坐标系中 2020-12-25 …