早教吧 育儿知识 作业答案 考试题库 百科 知识分享

在学习二项式定理时,我们知道杨辉三角中的数具有两个性质:①每一行中的二项式系数是“对称”的,即第1项与最后一项的二项式系数相等,第2项与倒数第2项的二项式系数相等,…

题目详情
在学习二项式定理时,我们知道杨辉三角中的数具有两个性质:①每一行中的二项式系数是“对称”的,即第1项与最后一项的二项式系数相等,第2项与倒数第2项的二项式系数相等,…;②图中每行两端都是1,而且除1以外的每一个数都等于它肩上两个数的和.我们也知道,性质①对应于组合数的一个性质:c n m =C n n-m
(1)试写出性质②所对应的组合数的另一个性质;
(2)请利用组合数的计算公式对(1)中组合数的另一个性质作出证明.
▼优质解答
答案和解析
(1)性质②所对应的组合数的另一个性质是
      
C mn+1
=
C mn
+
C m-1n
   
(2)因为
C mn+1
=
(n+1)!
m!(n+1-m)!

     
C mn
+
C m-1n
=
n!
m!(n-m)!
+
n!
(m-1)!(n+1-m)!
                 
=
n![(n+1-m)+m]
m!(n+1-m)!
=
n!(n+1)
m!(n+1-m)!
=
(n+1)!
m!(n+1-m)!

所以
C mn+1
=
C mn
+
C m-1n