早教吧作业答案频道 -->数学-->
无穷数列P:a1,a2,…,an,…,满足ai∈N*,且ai≤ai+1(i∈N*),对于数列P,记Tk(P)=min{n|an≥k}(k∈N*),其中min{n|an≥k}表示集合{n|an≥k}中最小的数.(Ⅰ)若数列P:1‚3‚4‚7‚…,
题目详情
无穷数列 P:a1,a2,…,an,…,满足ai∈N*,且ai≤ai+1(i∈N*),对于数列P,记Tk(P)=min{n|an≥k}(k∈N*),其中min{n|an≥k}表示集合{n|an≥k}中最小的数.
(Ⅰ) 若数列P:1‚3‚4‚7‚…,写出T1(P),T2(P),…,T5(P);
(Ⅱ)若Tk(P)=2k-1,求数列P 前n项的和;
(Ⅲ)已知a20=46,求s=a1+a2+…+a20+T1(P)+T2(P)+…+T46(P)的值.
(Ⅰ) 若数列P:1‚3‚4‚7‚…,写出T1(P),T2(P),…,T5(P);
(Ⅱ)若Tk(P)=2k-1,求数列P 前n项的和;
(Ⅲ)已知a20=46,求s=a1+a2+…+a20+T1(P)+T2(P)+…+T46(P)的值.
▼优质解答
答案和解析
(Ⅰ)∵数列P:1‚3‚4‚7‚…,即从第三项起每项是前两项的和,
∴T1(P)=1,T2(P)=2,T3(P)=2,T4(P)=3,T5(P)=4;
(Ⅱ)∵Tk(P)=2k-1,
∴T1(P)=1,T2(P)=3,T3(P)=5,T4(P)=7,…
∵T2(P)=3,且Tk(P)=min{n|an≥k}(k∈N*),
∴a3≥2,且a2<2,
同理,由T3(P)=5,且Tk(P)=min{n|an≥k}(k∈N*),
得a5≥3,a4<3,
以此类推,得a7≥4,a6<4;…;a2n-1≥n,a2n-2∵ai≤ai+1(i∈N*),ai∈N*,
∴a1=a2=1,a3=a4=2,…,a2n-1=a2n=n,…
当n为奇数时,a1+a2+a3+…+an=2(1+2+…+
)+
=
,
当n为偶数时,a1+a2+a3+…+an=2(1+2+…+
)=
,
∴数列{an}前n项的和Sn=
;
(Ⅲ)考查符合条件的数列P中,
若存在某个i(1≤i≤19)满足ai≤ai+1,
对应可得Tk(P),及s=a1+a2+…+a20+T1(P)+T2(P)+…+T46(P).
∵Tk(P)=min{n|an≥k}(k∈N*),∴Tai+1(P)=i+1,
下面将数列P略作调整,仅将第ai的值增加1,具体如下:
将aj′=aj+1,对于任何j(j≠1)令aj′=aj,可得数列P′及其对应数列Tk(P′),
根据数列Tk(P′)的定义,可得Tai+1(P′)=i,且Tj(P′)=Tj(P)(j≠ai+1).
显然Tai+1(P′)=Tai+1(P)-1,
∴s′=a1′+a2′+…+a20′+T1(P′)+T2(P′)+…+T46(P′)
=a1+a2+…+ai-1+(ai+1)+ai+1+…+a20+T1(P)+T2(P)+…+(Tai+1-1)+Tai+2+…+T46(P)
=a1+a2+…+a20+T1(P)+T2(P)+…+T46(P)=s,
即调整后s′=s.
如果数列{an′}还有存在相邻两项不相等,继续做以上的操作,
最终一定可以经过有限次的操作,使得{an}中的每一项变为相等,
且操作中保持s的值不变,
而当a1=a2=…=a20=46时,T1(P)=T2(P)=…=T46(P)=1,
∴s=a1+a2+…+a20+T1(P)+T2(P)+…+T46(P)=46×20+46=966.
∴T1(P)=1,T2(P)=2,T3(P)=2,T4(P)=3,T5(P)=4;
(Ⅱ)∵Tk(P)=2k-1,
∴T1(P)=1,T2(P)=3,T3(P)=5,T4(P)=7,…
∵T2(P)=3,且Tk(P)=min{n|an≥k}(k∈N*),
∴a3≥2,且a2<2,
同理,由T3(P)=5,且Tk(P)=min{n|an≥k}(k∈N*),
得a5≥3,a4<3,
以此类推,得a7≥4,a6<4;…;a2n-1≥n,a2n-2
∴a1=a2=1,a3=a4=2,…,a2n-1=a2n=n,…
当n为奇数时,a1+a2+a3+…+an=2(1+2+…+
n-1 |
2 |
n+1 |
2 |
(n+1)2 |
4 |
当n为偶数时,a1+a2+a3+…+an=2(1+2+…+
n |
2 |
n2+2n |
4 |
∴数列{an}前n项的和Sn=
|
(Ⅲ)考查符合条件的数列P中,
若存在某个i(1≤i≤19)满足ai≤ai+1,
对应可得Tk(P),及s=a1+a2+…+a20+T1(P)+T2(P)+…+T46(P).
∵Tk(P)=min{n|an≥k}(k∈N*),∴Tai+1(P)=i+1,
下面将数列P略作调整,仅将第ai的值增加1,具体如下:
将aj′=aj+1,对于任何j(j≠1)令aj′=aj,可得数列P′及其对应数列Tk(P′),
根据数列Tk(P′)的定义,可得Tai+1(P′)=i,且Tj(P′)=Tj(P)(j≠ai+1).
显然Tai+1(P′)=Tai+1(P)-1,
∴s′=a1′+a2′+…+a20′+T1(P′)+T2(P′)+…+T46(P′)
=a1+a2+…+ai-1+(ai+1)+ai+1+…+a20+T1(P)+T2(P)+…+(Tai+1-1)+Tai+2+…+T46(P)
=a1+a2+…+a20+T1(P)+T2(P)+…+T46(P)=s,
即调整后s′=s.
如果数列{an′}还有存在相邻两项不相等,继续做以上的操作,
最终一定可以经过有限次的操作,使得{an}中的每一项变为相等,
且操作中保持s的值不变,
而当a1=a2=…=a20=46时,T1(P)=T2(P)=…=T46(P)=1,
∴s=a1+a2+…+a20+T1(P)+T2(P)+…+T46(P)=46×20+46=966.
看了 无穷数列P:a1,a2,…,...的网友还看了以下:
{a(n)}中a(1)=3;na(n=+1)-(n+1)a(n)=2n(n+1);证明{a(n)/n 2020-03-30 …
一个证明,pi为圆周率,n为奇数1.设w为n次单位根(w=cos2pi/n+i*sin2pi/n) 2020-05-22 …
1.已知数列{a(n)}满足a(n)a(n+1)a(n+2)a(n+3)=24,且a1=1a2=2 2020-07-09 …
1.5(a+b)^n-2/3(a-b)^n-3/5(a+b0^n+0.4(a-b)^n11.5(a 2020-07-09 …
一道高一数列题数列{an}的首项a1=3且对任意自然数n都有2/(an-an+1)=n(n+1)求 2020-07-30 …
高中数列设数列{An}的首项A1=a≠1/4,且A(n+1)=1/2An,n为偶数.A(n+1)= 2020-07-30 …
无穷数列an中,a1=1,an=√(an-1)^2+4,(n>=2,n属于N*)已知数列{an}中 2020-08-02 …
设数列an满足a1=2,a(m+n)+a(m-n)-m+n=1/2(a2m+a2n)..设数列an满 2020-10-31 …
已知数列{a底n}中,a1=a2=1,且an=an-1+an-2(n≥3,n∈n*),设bn=an/ 2020-11-27 …
数列{an}的通项公式可以确定,(1)在数列{An}中,有An+1=An+n成立,(2)数列{An} 2021-02-09 …