早教吧作业答案频道 -->数学-->
设双曲线Cx^2/a^2-y^2/b^2=1的右焦点为F,O为坐标原点,若以线段OF为直径的圆与双曲线C的一条渐近线交与点A(不同于O点)使△OAF的面积为b^2,求双曲线的离心率
题目详情
设双曲线Cx^2/a^2-y^2/b^2=1的右焦点为F,O为坐标原点,若以线段OF为直径的圆与双曲线C的一条渐近
线交与点A(不同于O点)使△OAF的面积为b^2,求双曲线的离心率
线交与点A(不同于O点)使△OAF的面积为b^2,求双曲线的离心率
▼优质解答
答案和解析
设F(C,0)A(X,Y),则有
圆方程为(X-C/2)^2+Y^2=C^2/4,化简得X^2-CX+Y^2=0
因三角形OAF的面积为b^2,则b^2=1/2YC,得Y=2b^2/C,由渐进线Y=b/aX,可解得X=2ab/c
将X和Y代入圆方程,得4a^2b^2/c^2+4b^4/c^2=2ab,化简得2b=a,
c^2=a^2+b^2=3/2a^2,离心率e=c/a=√6/2
圆方程为(X-C/2)^2+Y^2=C^2/4,化简得X^2-CX+Y^2=0
因三角形OAF的面积为b^2,则b^2=1/2YC,得Y=2b^2/C,由渐进线Y=b/aX,可解得X=2ab/c
将X和Y代入圆方程,得4a^2b^2/c^2+4b^4/c^2=2ab,化简得2b=a,
c^2=a^2+b^2=3/2a^2,离心率e=c/a=√6/2
看了 设双曲线Cx^2/a^2-y...的网友还看了以下:
已知直线y= 根号3x+4 根号3与x轴、y轴分别交于A、B两点,∠ABC=60°,BC与x轴交于 2020-05-16 …
抛物线焦点到抛物线上任意一点的距离已知抛物线y^2=2px,求焦点到抛物线上任意一点A(m,n)的 2020-05-20 …
平面α∥平面β的一个充分条件是()A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a 2020-05-22 …
如图所示的匀强电场中,|AB|=12cm,AB连线与电场方向成60°的角,|BC|=6cm,UAC 2020-06-06 …
体育课上有这样一个游戏,从A点起跑,跑到直线l上某一点抱一个篮球,先后经过B点和C点,再回到点A. 2020-06-22 …
如图,已知∠AOB=7°,一条光线从点A出发后射向OB边.若光线与OB边垂直,则光线沿原路返回到点 2020-06-22 …
体育课上有这样一个游戏,从A点起跑,跑到直线l上某一点抱一个篮球,先后经过B点和C点,再回到点A. 2020-07-01 …
快开学了,1)将平行四边形ABCD的对角线交点与直角坐标系的原点重合,且点A,B的坐标分别为(-2 2020-07-04 …
如图所示,过抛物线y2=2px(p>0)的焦点F的直线l交抛物线于点A、B,交其准线l′点C,若| 2020-07-20 …
的对称轴为x=,设抛物线与y轴交于A点,与x轴交于B、C两点(B点在C点的左边),锐角△ABC的高 2020-07-22 …