早教吧作业答案频道 -->数学-->
A1、A2为x2/a2+y2/b2=1)左右顶点椭圆丄异于A1A2的P,向量POPA=0求椭圆离心率e取值范围a>b>0,O为坐标原点
题目详情
A1、A2为x2/a2+y2/b2=1 )左右顶点椭圆丄异于A1A2 的P,向量POPA=0求椭圆离心率e取值范围
a>b>0,O为坐标原点
a>b>0,O为坐标原点
▼优质解答
答案和解析
A1(-a,0),A2(a,0),
设P(x,y),则PO=(-x,-y),PA2=(a-x,-y),
∵PO•PA2=0,
∴(a-x)(-x)+(-y)(-y)=0,y2=ax-x2>0,
∴0<x<a.
代入x2/a2+y2/b2=1,
(b2-a2)x2+a3x-a2b2=0 在(0,a )上有解,
令f(x)=(b2-a2)x2+a3x-a2b2=0,
∵f(0)=-a2b2<0,f(a)=0,
△=(a3)2-4×(b2-a2)×(-a2b2)=a2( a4-4a2b2+4b4 )=a2(a2-2c2)2≥0,
∴对称轴满足 0<-a3/2(b2-a2)<a,即 0<a3/2(a2-b2)<a,
∴a2/2c2<1,
c2/a2>12,
又 0<c/a<1,
∴√2/2<c/a<1,
设P(x,y),则PO=(-x,-y),PA2=(a-x,-y),
∵PO•PA2=0,
∴(a-x)(-x)+(-y)(-y)=0,y2=ax-x2>0,
∴0<x<a.
代入x2/a2+y2/b2=1,
(b2-a2)x2+a3x-a2b2=0 在(0,a )上有解,
令f(x)=(b2-a2)x2+a3x-a2b2=0,
∵f(0)=-a2b2<0,f(a)=0,
△=(a3)2-4×(b2-a2)×(-a2b2)=a2( a4-4a2b2+4b4 )=a2(a2-2c2)2≥0,
∴对称轴满足 0<-a3/2(b2-a2)<a,即 0<a3/2(a2-b2)<a,
∴a2/2c2<1,
c2/a2>12,
又 0<c/a<1,
∴√2/2<c/a<1,
看了 A1、A2为x2/a2+y2...的网友还看了以下:
如图,椭圆x^2/a^2+y^2/b^2=1(a>b>0)的一个焦点为F(1,0)且过点(2,0) 2020-05-12 …
椭圆C x2/a2+y2/b2=1(a>b>0)的一个焦点为F(1,0),且过点(2,0) 1)求 2020-05-16 …
(在线等)在直角坐标系中,以M(-1,0)为圆心的圆与直线x-√3y-3=0相切,在直角坐标系中, 2020-06-06 …
已知圆C1:X^2+2CX+Y^2=0,圆C2:x^2-2cx+y^2=0,椭圆C:x^2/a^2 2020-06-30 …
过点O(0,0)的圆C与直线y=2x-8相切于点P(4,0).(1)求圆C的方程;(2)已知点B的 2020-07-31 …
1.若实数x,y满足(x+5)^2+(y-12)^2=196,则x^2+y^2的最小值为2.若圆x 2020-08-01 …
已知圆C1:(x+1)2+(y-1)2=1,圆C2与圆C1关于直线x-y-1=0对称,则圆C2的方程 2020-10-31 …
已知点(0,1),(3+2根号2,0),(3-2根号2,0)在圆C上,(1)求圆C的方程.(2)若圆 2020-11-01 …
1.过圆x^2+y^2=1外一点A(2,0)做圆的割线,求割线被圆截得的弦的中点的轨迹方程.2.求L 2020-12-05 …
还会提分谁会这道题...几何的.快已知椭圆E的中心在坐标原点,焦点在坐标轴上,且经过A(-2,0), 2020-12-08 …