早教吧作业答案频道 -->数学-->
请问,余弦定理是否必须在直角三角形中才适用,对边比邻边是否必须在直角三角形,3Q方便的话请把3角函数来个详细解答(PS;满意有追分)
题目详情
请问,余弦定理是否必须在直角三角形中才适用,对边比邻边是否必须在直角三角形,3Q
方便的话请把3角函数来个详细解答(PS;满意有追分)
方便的话请把3角函数来个详细解答(PS;满意有追分)
▼优质解答
答案和解析
余弦定理
余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活.
对于任意三角形 三边为a,b,c 三角为A,B,C 满足性质
a^2=b^2+c^2-2*b*c*CosA
b^2=a^2+c^2-2*a*c*CosB
c^2=a^2+b^2-2*a*b*CosC
CosC=(a^2+b^2-c^2)/2ab
CosB=(a^2+c^2-b^2)/2ac
CosA=(c^2+b^2-a^2)/2bc
证明:
如图:
∵a=b-c
∴a^2=(b-c)^2 (证明中前面所写的a,b,c皆为向量,^2为平方)拆开即a^2=b^2+c^2-2bc
再拆开,得a^2=b^2+c^2-2*b*c*CosA
同理可证其他,而下面的CosA=(c^2+b^2-a^2)/2bc就是将CosA移到右边表示一下.
---------------------------------------------------------------------------------------------------------------
平面几何证法:
在任意△ABC中
做AD⊥BC.
∠C所对的边为c,∠B所对的边为b,∠A所对的边为a
则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c
根据勾股定理可得:
AC^2=AD^2+DC^2
b^2=(sinB*c)^2+(a-cosB*c)^2
b^2=sin^2B*c^2+a^2+cos^2B*c^2-2ac*cosB
b^2=(sin^2B+cos^2B)*c^2-2ac*cosB+a^2
b^2=c^2+a^2-2ac*cosB
cosB=(c^2+a^2-b^2)/2ac
从余弦定理和余弦函数的性质可以看出,
如果一个三角形两边的平方和等于第三
边的平方,那么第三边所对的角一定是直
角,如果小于第三边的平方,那么第三边所
对的角是钝角,如果大于第三边,那么第三边
所对的角是锐角.即,利用余弦定理,可以判断三角形形状.
同时,还可以用余弦定理求三角形边长取值范围.
余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活.
对于任意三角形 三边为a,b,c 三角为A,B,C 满足性质
a^2=b^2+c^2-2*b*c*CosA
b^2=a^2+c^2-2*a*c*CosB
c^2=a^2+b^2-2*a*b*CosC
CosC=(a^2+b^2-c^2)/2ab
CosB=(a^2+c^2-b^2)/2ac
CosA=(c^2+b^2-a^2)/2bc
证明:
如图:
∵a=b-c
∴a^2=(b-c)^2 (证明中前面所写的a,b,c皆为向量,^2为平方)拆开即a^2=b^2+c^2-2bc
再拆开,得a^2=b^2+c^2-2*b*c*CosA
同理可证其他,而下面的CosA=(c^2+b^2-a^2)/2bc就是将CosA移到右边表示一下.
---------------------------------------------------------------------------------------------------------------
平面几何证法:
在任意△ABC中
做AD⊥BC.
∠C所对的边为c,∠B所对的边为b,∠A所对的边为a
则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c
根据勾股定理可得:
AC^2=AD^2+DC^2
b^2=(sinB*c)^2+(a-cosB*c)^2
b^2=sin^2B*c^2+a^2+cos^2B*c^2-2ac*cosB
b^2=(sin^2B+cos^2B)*c^2-2ac*cosB+a^2
b^2=c^2+a^2-2ac*cosB
cosB=(c^2+a^2-b^2)/2ac
从余弦定理和余弦函数的性质可以看出,
如果一个三角形两边的平方和等于第三
边的平方,那么第三边所对的角一定是直
角,如果小于第三边的平方,那么第三边所
对的角是钝角,如果大于第三边,那么第三边
所对的角是锐角.即,利用余弦定理,可以判断三角形形状.
同时,还可以用余弦定理求三角形边长取值范围.
看了 请问,余弦定理是否必须在直角...的网友还看了以下:
三角形一个外角等于与它不相邻的一个内角的3倍,等于与它相邻的内角的4倍,则该三角形三个内角分别是多 2020-05-13 …
(1)相等且互补的两个角都是直角;(2)两个角互补,则它们的角平分线互相垂直(3)两个角互为邻补角 2020-05-24 …
一个多边形的每一个内角都相等,且它的每一个外角与相邻内角之比为3:6一个多边形的每一个内角都相等, 2020-06-05 …
元角分相邻单位之间的进率是 2020-06-08 …
5.69元=元角分3千米8米=千米.378克=千克4.63米=米分米厘米. 2020-06-14 …
(1)相等且互补的两个角都是直角;(2)两个角互补,则它们的角平分线互相垂直(3)两个角互为邻补角 2020-06-18 …
下列说法正确的有()①一个角的邻补角只有一个②一个角的邻补角必大于这个角③两角之和为180°,则这 2020-08-02 …
做木工3、4、5开直角,怎么开法?做木工开直角,分3米4米5米开,如何开法?谁懂啊 2020-12-01 …
初一下册暑假题1.一个三角形的一个外角是与它相邻内角的1.5倍,是不相邻的一个内角的3倍,求这个三角 2020-12-14 …
三角形的一个外角等于与它相邻的内角的3倍,也等于与他不相邻的一个内角的4倍,则这个三角形各内角的度数 2021-01-30 …