早教吧作业答案频道 -->数学-->
已知函数f(x)=aex-12x2-x(a∈R,e为自然对数的底数).(1)若曲线y=f(x)在点(1,f(1))处的切线与直线x+(e-2)y-1=0垂直,求f(x)的单调区间;(2)若函数f(x)有两个极值点,求实
题目详情
已知函数f(x)=aex-
x2-x(a∈R,e为自然对数的底数).
(1)若曲线y=f(x)在点(1,f(1))处的切线与直线x+(e-2)y-1=0垂直,求f(x)的单调区间;
(2)若函数f(x)有两个极值点,求实数a的取值范围;
(3)证明:当x>1时,exlnx>x-
.
1 |
2 |
(1)若曲线y=f(x)在点(1,f(1))处的切线与直线x+(e-2)y-1=0垂直,求f(x)的单调区间;
(2)若函数f(x)有两个极值点,求实数a的取值范围;
(3)证明:当x>1时,exlnx>x-
1 |
x |
▼优质解答
答案和解析
(1)f(x)=aex-
x2-x的导数f′(x)=aex-x-1,
可得曲线y=f(x)在点(1,f(1))处的切线斜率为ae-2,
由切线与直线x+(e-2)y-1=0垂直,可得(ae-2)•(-
)=-1,
解得a=1,即f(x)=ex-
x2-x的导数f′(x)=ex-x-1,
令g(x)=ex-x-1,g′(x)=ex-1,
当x>0时,g′(x)>0,g(x)递增;当x<0时,g′(x)<0,g(x)递减.
即有g(x)≥g(0)=0,即有f′(x)≥0,
则f(x)的单调增区间为(-∞,+∞);
(2)解法一、由f′(x)=aex-x-1,
函数f(x)有两个极值点,即为h(x)=aex-x-1有两个零点,
h′(x)=aex-1,当a≤0时,h′(x)<0,h(x)递减,h(x)不可能有两个零点;
当a>0时,令h′(x)=0,可得x=-lna,
当x>-lna时,h′(x)>0,h(x)递增;当x<-lna时,h′(x)<0,h(x)递减.
可得x=-lna处h(x)有极小值也为最小值,
若函数h(x)有两个零点,则h(-lna)<0,即lna<0,即有0<a<1;
解法二、由f′(x)=aex-x-1,
函数f(x)有两个极值点,即为f′(x)=aex-x-1=0有两个不等的实根,
即有a=
有两个不等实根.
令h(x)=
,h′(x)=
,
当x>0时,h′(x)<0,h(x)递减;当x<0时,h′(x)>0,h(x)递增.
h(x)在x=0处取得最大值1,
当x>0时,h(x)>0,x→+∞,h(x)→0,
当x≤0时,h(0)=1,h(-2)=-e2<0,结合h(x)在(-∞,0)递增,可得h(x)在(-∞,0)只有一个零点;
故0<a<1.
(3)证明:由(1)可得x>1时,ex>x+1>0,lnx>0,
即有exlnx>(x+1)lnx,
设φ(x)=(x+1)lnx-x+
,φ′(x)=lnx+
-1-
=lnx+
(1-
)>0(x>1),
所以φ(x)在(1,+∞)递增,即有φ(x)>φ(1)=0,
即(x+1)lnx>x-
,
故当x>1时,exlnx>x-
.
1 |
2 |
可得曲线y=f(x)在点(1,f(1))处的切线斜率为ae-2,
由切线与直线x+(e-2)y-1=0垂直,可得(ae-2)•(-
1 |
e-2 |
解得a=1,即f(x)=ex-
1 |
2 |
令g(x)=ex-x-1,g′(x)=ex-1,
当x>0时,g′(x)>0,g(x)递增;当x<0时,g′(x)<0,g(x)递减.
即有g(x)≥g(0)=0,即有f′(x)≥0,
则f(x)的单调增区间为(-∞,+∞);
(2)解法一、由f′(x)=aex-x-1,
函数f(x)有两个极值点,即为h(x)=aex-x-1有两个零点,
h′(x)=aex-1,当a≤0时,h′(x)<0,h(x)递减,h(x)不可能有两个零点;
当a>0时,令h′(x)=0,可得x=-lna,
当x>-lna时,h′(x)>0,h(x)递增;当x<-lna时,h′(x)<0,h(x)递减.
可得x=-lna处h(x)有极小值也为最小值,
若函数h(x)有两个零点,则h(-lna)<0,即lna<0,即有0<a<1;
解法二、由f′(x)=aex-x-1,
函数f(x)有两个极值点,即为f′(x)=aex-x-1=0有两个不等的实根,
即有a=
x+1 |
ex |
令h(x)=
x+1 |
ex |
-x |
ex |
当x>0时,h′(x)<0,h(x)递减;当x<0时,h′(x)>0,h(x)递增.
h(x)在x=0处取得最大值1,
当x>0时,h(x)>0,x→+∞,h(x)→0,
当x≤0时,h(0)=1,h(-2)=-e2<0,结合h(x)在(-∞,0)递增,可得h(x)在(-∞,0)只有一个零点;
故0<a<1.
(3)证明:由(1)可得x>1时,ex>x+1>0,lnx>0,
即有exlnx>(x+1)lnx,
设φ(x)=(x+1)lnx-x+
1 |
x |
x+1 |
x |
1 |
x2 |
1 |
x |
1 |
x |
所以φ(x)在(1,+∞)递增,即有φ(x)>φ(1)=0,
即(x+1)lnx>x-
1 |
x |
故当x>1时,exlnx>x-
1 |
x |
看了 已知函数f(x)=aex-1...的网友还看了以下:
x^2-y^2=a^2右准线交实轴于P,过P直线交双曲线A、B,过右焦点F引直线垂直AB交双曲线于 2020-04-08 …
椭圆Ex^2/5+y^2/4=1的右焦点F,直线l与曲线x^2+y^2=4相切且交椭圆E于AB两点 2020-05-13 …
(2012•温州三模)如图,抛物线F:y=x2-2x+3的顶点为P,与y轴交于点A,过点P作PB⊥ 2020-05-14 …
1,设F是椭圆x^2/36+y^2/100=1的上焦点,且椭圆上恰有5个不同的点Pi,(i=1,2 2020-06-04 …
将抛物线F:y=x2-3x+2向右平移1个单位,再向下平移2个单位得到抛物线F′.1.解析式F′2 2020-06-05 …
已知:抛物线f:y=-(x-2)2+5,试写出把抛物线f向左平移2个单位后,所得的新抛物线f1的解 2020-07-08 …
(2009•大连)如图,抛物线F:y=ax2+bx+c的顶点为P,抛物线F与y轴交于点A,与直线O 2020-07-14 …
已知抛物线C:y^2=2px的焦点为F,准线经过双曲线x^2-y^2=1/2的左焦点,点P是F关于 2020-07-26 …
如图,已知点A(0,2),B(2,2),C(-1,-2),抛物线F:y=x2-2mx+m2-2与直 2020-07-26 …
如图,抛物线F:y=ax^2+bx+c的顶点为P,抛物线与y轴交于点A,与直线OP交于点B,过点P 2020-07-29 …