早教吧作业答案频道 -->其他-->
若f′(x)=2ex+xex(其中e为自然对数的底数),则f(x)可以是()A.xex+xB.(x+1)ex+1C.xexD.(x+1)ex+x
题目详情
若f′(x)=2ex+xex(其中e为自然对数的底数),则f(x)可以是( )
A.xex+x
B.(x+1)ex+1
C.xex
D.(x+1)ex+x
A.xex+x
B.(x+1)ex+1
C.xex
D.(x+1)ex+x
▼优质解答
答案和解析
利用导数的运算法则可得:A.(xex+x)′=ex+xex+1,
B.[(x+1)ex+1]=ex+(x+1)ex=(x+2)ex,
C.(xex)′=ex+xex,
D.[(x+1)ex+x]′=ex+(x+1)ex+1=(x+2)ex+1.
故选B.
B.[(x+1)ex+1]=ex+(x+1)ex=(x+2)ex,
C.(xex)′=ex+xex,
D.[(x+1)ex+x]′=ex+(x+1)ex+1=(x+2)ex+1.
故选B.
看了 若f′(x)=2ex+xex...的网友还看了以下:
已知集合U={x|x>0},C∪A={x|0<x<2},那么集合A=()A.{x|x≤0或x≥2} 2020-05-17 …
1.设P={x|x<1},Q={x|x2<4},则P∩Q()A.{x|-1<x<2}B.{x1.设 2020-06-05 …
已知函数f(x)=ax2-lnx(a为常数).(1)当a=12时,求f(x)的单调递减区间;(2) 2020-06-08 …
已知函数f(x)为奇函数,x>0时为增函数且f(2)=0,则{x|f(x-2)>0}=()A.{x 2020-06-09 …
已知y=ex+∫x0y(t)dt,则函数y(x)的表达式为()A.y=xex+CB.y=xexC. 2020-07-23 …
已知函数f(x)=ax2-lnx(a为常数).(1)当a=12时,求f(x)的单调递减区间;(2) 2020-07-26 …
已知函数f(x)=a-x+xex,若存在x0>-1,使得f(x0)≤0,则实数a的取值范围为()A 2020-07-30 …
设二阶常系数线性微分方程y″+αy′+βy=γe-x的一个特解为y=ex+(1+x)e-x,则此方 2020-07-31 …
设函数f(x)=x2lnx,g(x)=xex,若存在x1∈[e,e2],x2∈[1,2],使得e3 2020-08-02 …
f(x)’=ex的平方+xex的平方f(0)’=?为什么? 2020-11-02 …