早教吧作业答案频道 -->数学-->
函数y=ln(aex-x+2a2-3)(e为自然对数的底数)的值域是实数集R,则实数a的取值范围是()A.(-∞,e]B.(-∞,1]C.[0,e]D.[0,1]
题目详情
函数y=ln(aex-x+2a2-3)(e为自然对数的底数)的值域是实数集R,则实数a的取值范围是( )
A.(-∞,e]
B.(-∞,1]
C.[0,e]
D.[0,1]
A.(-∞,e]
B.(-∞,1]
C.[0,e]
D.[0,1]
▼优质解答
答案和解析
设g(x)=aex-x+2a2-3,则g′(x)=aex-1.
①当a≤0时,g′(x)<0在R上恒成立,g(x)在R上是减函数,
x→+∞时,g(x)→-∞,x→-∞时,g(x)→+∞,
此时g(x)值域为R.符合要求.
②当a>0时,由g′(x)=0得x=-lna.
由g′(x)<0得x<-lna,g(x)在(-∞,-lna)上单调递减.
由g′(x)>0得x>-lna,g(x)在(-lna,+∞)上单调递增.
∴g(x)min=g(-lna)=2a2+lna-2.
下面研究g(x)最小值:
令h(a)=2a2+lna-2,则h′(a)=4a+
>0(a>0),h(a)在(0,+∞)上单调递增.
可知当a>1时,g(x)min>0,当a=1时,g(x)min=0,当a<1时,g(x)min<0,
而x→+∞时,g(x)→+∞.所以0<a≤1.
综上所述,实数a的取值范围是a≤0或0<a≤1,即a∈(-∞,1].
故选:B.
①当a≤0时,g′(x)<0在R上恒成立,g(x)在R上是减函数,
x→+∞时,g(x)→-∞,x→-∞时,g(x)→+∞,
此时g(x)值域为R.符合要求.
②当a>0时,由g′(x)=0得x=-lna.
由g′(x)<0得x<-lna,g(x)在(-∞,-lna)上单调递减.
由g′(x)>0得x>-lna,g(x)在(-lna,+∞)上单调递增.
∴g(x)min=g(-lna)=2a2+lna-2.
下面研究g(x)最小值:
令h(a)=2a2+lna-2,则h′(a)=4a+
1 |
a |
可知当a>1时,g(x)min>0,当a=1时,g(x)min=0,当a<1时,g(x)min<0,
而x→+∞时,g(x)→+∞.所以0<a≤1.
综上所述,实数a的取值范围是a≤0或0<a≤1,即a∈(-∞,1].
故选:B.
看了 函数y=ln(aex-x+2...的网友还看了以下:
希望能给点解题的过程1,若y=xˆ3+sinx ,则y'' 2,已知 xy-eˆx+eˆy =0, 2020-05-17 …
高中物理中e和E的区别是什么?学了中性面后说感应电动势,老是不知道是用e的公式还是E的公式,怎么区 2020-05-23 …
协方差cov(X+20,Y+10)=cov(X,知道了COV(X+a,Y+b)=E[(X+a)(Y 2020-06-17 …
用以下英文宇母填在上a,a,a,a,a,a,b,e,e,d,e,e,e,e,e,e,f,g,g用以 2020-06-24 …
对数函数y=e^x-e^-x/e^x+e^-x转化为用含y的式子表示x的形式.谢咯,对数函数y=e 2020-07-15 …
对数函数y=e^x-e^-x/e^x+e^-x转化为用含y的式子表示x的形式.谢咯,对数函数y=e 2020-07-15 …
高数导数问题.设f(x)=(e^x-e^a)g(x)在x=a处可导,则函数g(x)应该满足条件是? 2020-07-20 …
已知函数f(x)=(a+lnx)除以x(a属于R)若a=4求曲线F(X)在点(e,f(e)处的切线 2020-07-27 …
数学向量1,A,B,C,D为平面上4个互异点,且满足(向量DB+DC-2DA)点乘(AB-AC)=0 2020-11-02 …
“我们可以得到A和B分别与C、D、E之间的关系”这句话用英语怎么表达“我们可以得到A和B分别与C、D 2020-12-25 …