早教吧作业答案频道 -->数学-->
圆锥曲线问题已知与曲线C:x^2+y^2-2x-2y+1=0相切的直线L交x轴、y轴于A、B两点,O为原点,|OA|=a,|OB|=b,(a>2,b>2)(1)求证:曲线C与L相切的条件是(a-2)(b-2)=2(2)求线段AB中点的轨迹方程(3)求三角形AOB面积的最
题目详情
圆锥曲线问题
已知与曲线C: x^2+y^2-2x-2y+1=0相切的直线L交x轴、y轴于A、B两点,O为原点,|OA|=a,|OB|=b,(a>2,b>2)
(1)求证:曲线C与L相切的条件是(a-2)(b-2)=2
(2)求线段AB中点的轨迹方程
(3)求三角形AOB面积的最小值
已知与曲线C: x^2+y^2-2x-2y+1=0相切的直线L交x轴、y轴于A、B两点,O为原点,|OA|=a,|OB|=b,(a>2,b>2)
(1)求证:曲线C与L相切的条件是(a-2)(b-2)=2
(2)求线段AB中点的轨迹方程
(3)求三角形AOB面积的最小值
▼优质解答
答案和解析
(1)由曲线C:x^2+y^2-2x-2y+1=0得,曲线C方程可改写为(x-1)^2+(y-1)^2=1^2,故C为以(1,1)为圆心,1为半径的圆.
直线AB的方程可写为y/b+x/a=1,化简为bx+ay-ab=0
圆心到直线AB的距离d=(a*1+b*1-ab)的绝对值/根号(a^2+b^2)=1
化简得(a-2)(b-2)=2
(2)设线段AB中点坐标为(x,y) 由中点坐标公式得:x=a/2,y=b/2
故a=2x b=2y 代入(a-2)(b-2)=2即可得AB中点方程为(x-1)(y-1)=1/2.
(3)由2=(a-2)(b-2)=ab-2(a+b)+4得ab-2(a+b)+2=0≥ab-2*根号ab+2=0
化简得ab≤6+4*根号2
所以S三角形AOB=1/2ab≤1/2(6+4*根号2)=3+2*根号2
三角形AOB面积的最小值为3+2*根号2
直线AB的方程可写为y/b+x/a=1,化简为bx+ay-ab=0
圆心到直线AB的距离d=(a*1+b*1-ab)的绝对值/根号(a^2+b^2)=1
化简得(a-2)(b-2)=2
(2)设线段AB中点坐标为(x,y) 由中点坐标公式得:x=a/2,y=b/2
故a=2x b=2y 代入(a-2)(b-2)=2即可得AB中点方程为(x-1)(y-1)=1/2.
(3)由2=(a-2)(b-2)=ab-2(a+b)+4得ab-2(a+b)+2=0≥ab-2*根号ab+2=0
化简得ab≤6+4*根号2
所以S三角形AOB=1/2ab≤1/2(6+4*根号2)=3+2*根号2
三角形AOB面积的最小值为3+2*根号2
看了 圆锥曲线问题已知与曲线C:x...的网友还看了以下:
已知抛物线y2=4x的准线l与双曲线x2a2-y2b2=1(a>0,b>0)相切,且l与该双曲线的 2020-04-08 …
已知在直角坐标系xOy中,曲线C的参数方程为x=1+4cosθy=2+4sinθ(θ为参数),直线 2020-05-15 …
图中装置由加速器和平移器组成,平移器由两对水平放置、相距为l的相同平行金属板构成,极板长度为l、间 2020-06-14 …
双曲线与直线相交的问题设双曲线C:x^2/9-y^2/7=1的右焦点为F,直线l过点F且斜率为k, 2020-06-15 …
(2014•宁夏二模)为了测量某一弹簧的劲度系数,将该弹簧竖直悬挂起来,在自由端挂上不同质量的砝码 2020-06-23 …
如图1所示,为了测量某一弹簧的劲度系数,将该弹簧竖直悬挂起来,在自由端挂上不同质量的砝码.实验测出 2020-06-23 …
用长为L的相同三块积木依次放倒重叠,并突出与桌面外,当积木刚好不跌落时,突出最远的最上面一块积木的 2020-06-24 …
若直线l与曲线C满足下列两个条件:(i)直线l在点P(x0,y0)处与曲线C相切;(ii)曲线C在 2020-07-25 …
(2011•安徽)Ⅰ.为了测量某一弹簧的劲度系数,将该弹簧竖直悬挂起来,在自由端挂上不同质量的砝码 2020-07-27 …
已知直线l:x=-1+tcosαy=tsinα(t为参数,α为l的倾斜角),以坐标原点为极点,x轴 2020-07-31 …