早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设函数f(x)=ex(e为自然对数的底数),g(x)=x2-x,记h(x)=f(x)+g(x).(1)h′(x)为h(x)的导函数,判断函数y=h′(x)的单调性,并加以证明;(2)若函数y=|h(x)-a|-1=0有两个零

题目详情
设函数f(x)=ex(e为自然对数的底数),g(x)=x2-x,记h(x)=f(x)+g(x).
(1)h′(x)为h(x)的导函数,判断函数y=h′(x)的单调性,并加以证明;
(2)若函数y=|h(x)-a|-1=0有两个零点,求实数a的取值范围.
▼优质解答
答案和解析
(1)h(x)=f(x)+g(x)=ex+x2-x,∴h'(x)=ex+2x-1,
令F(x)=h'(x),则F'(x)=ex+2>0,
∴F(x)在(-∞,+∞)上单调递增,即h'(x)在(-∞,+∞)上单调递增.
(2)由(1)知h'(x)在(-∞,+∞)上单调递增,而h'(0)=0,
∴h'(x)=0有唯一解x=0,x,h'(x),h(x)的变化情况如下表所示:
x (-∞,0) 0 (0,+∞)
h'(x) - 0 +
h(x) 递减 极小值 递增
又∵函数y=|h(x)-a|-1有两个零点,
∴方程|h(x)-a|-1=0有两个根,即方程h(x)=a±1有两个根
而a+1>a-1,∴a-1<(h(x))min=h(0)=1且a+1>(h(x))min=h(0)=1,
解得0<a<2.
所以,若函数y=|h(x)-a|-1有两个零点,实数a的取值范围是(0,2)