早教吧作业答案频道 -->数学-->
已知:正方形ABCD内一点E,连接EA、EB、EC.(1)若EA2+EC2=2EB2,请说明点E必在对角线AC上.(2)若EA+EB+EC的最小值为2(3+1),求正方形ABCD的边长.
题目详情
已知:正方形ABCD内一点E,连接EA、EB、EC.
(1)若EA2+EC2=2EB2,请说明点E必在对角线AC上.
(2)若EA+EB+EC的最小值为
(
+1),求正方形ABCD的边长.

(1)若EA2+EC2=2EB2,请说明点E必在对角线AC上.
(2)若EA+EB+EC的最小值为
2 |
3 |

▼优质解答
答案和解析
(1)证明:如图1中,将△ABE绕点B顺时针旋转90°得△CBE′,连接EE′.

∵BE=BE′,∠EBE′=90°,AE=CE′,
∴EE′=
BE,
∵EA2+EC2=2EB2,
∴CE′2+EC2=EE′2,
∴∠ECE′=90°,
∴∠ECB+∠BCE′=∠ECB+∠BAE=90°,
∴A、E、C共线,
∴点E在正方形ABCD的对角线上.
(2) 如图2中,将△ABE绕点B逆时针旋转60°得△A′BE′,连结A′C,作A′H⊥BC于H.

∵△ABE绕点B逆时针旋转60°得△A′BE′,
∴BE=BE′,∠EBE′=60°,
∴△EBE′为等边三角形,
∴EE′=BE,
∴A′E′=AE,BA′=BA=2,∠ABA′=60°,
∵A′E′+E′E+EC≥A′C,
∴AE+BE+CE≥AC(当且仅当点E′、点E在AC上时,取等号),
∴AE+BE+CE有最小值,最小值为A′C的长,设正方形的边长为a,
在Rt△A′BH中,∠A′BH=30°,
∴A′H=
A′B=
a,BH=
A′H=
a,
∴CH=a+
a,
在Rt△A′CH中,A′C2=A′H2+CH2,
∴(
a)2+(a+
a)2=(
+
)2,
解得a=2.
∴正方形的边长为2.

∵BE=BE′,∠EBE′=90°,AE=CE′,
∴EE′=
2 |
∵EA2+EC2=2EB2,
∴CE′2+EC2=EE′2,
∴∠ECE′=90°,
∴∠ECB+∠BCE′=∠ECB+∠BAE=90°,
∴A、E、C共线,
∴点E在正方形ABCD的对角线上.
(2) 如图2中,将△ABE绕点B逆时针旋转60°得△A′BE′,连结A′C,作A′H⊥BC于H.

∵△ABE绕点B逆时针旋转60°得△A′BE′,
∴BE=BE′,∠EBE′=60°,
∴△EBE′为等边三角形,
∴EE′=BE,
∴A′E′=AE,BA′=BA=2,∠ABA′=60°,
∵A′E′+E′E+EC≥A′C,
∴AE+BE+CE≥AC(当且仅当点E′、点E在AC上时,取等号),
∴AE+BE+CE有最小值,最小值为A′C的长,设正方形的边长为a,
在Rt△A′BH中,∠A′BH=30°,
∴A′H=
1 |
2 |
1 |
2 |
3 |
| ||
2 |
∴CH=a+
| ||
2 |
在Rt△A′CH中,A′C2=A′H2+CH2,
∴(
1 |
2 |
| ||
2 |
6 |
2 |
解得a=2.
∴正方形的边长为2.
看了 已知:正方形ABCD内一点E...的网友还看了以下:
下图中AB、CD为两条纬线,B、C、E位于同一经线上,A、E、D为晨昏线上的三点,此时太阳高度为0 2020-04-27 …
已知a,b,c,d,e,f六个数.如果a/b=c/d=e/f(b+d+f≠0),那么a+c+e/b 2020-06-02 …
若a/b=c/d=e/f,则下列各式中正确的是().A.e/f=ac/bdB.e/f=(a+c+e 2020-06-06 …
已知b分之a=d分之c=f分之e=2且b+d+f≠0.(1)b+d+f分之a+c+e=(2)b-d 2020-06-09 …
现有abcde五种物质,在常温下ABC为气体,D是黑色固体,E是液体,C和D含同一种元素,B和E含 2020-06-12 …
(1)如图①∵∠B+∠D+∠1=180°又∵∠1=∠A+∠2∠2=∠C+∠E∴∠A+∠C+∠E+∠ 2020-06-13 …
某同学用显微镜观察洋葱鳞片叶内表皮细胞时看到了如图所示几幅图象,这几幅图象在操作过程中出现的顺序依 2020-07-01 …
(x-3)6=ax6+bx5+cx4+dx3+ex2+fx+g(其中数字为x的次数)求a+b+c+ 2020-07-30 …
急一道数学题已知a/b=c/d=e/f=m/n(b+d+f+...+n≠0)(1)试说明:a+c+e 2020-11-01 …
excel里面如何用字母替代数字进行运算,比如A=1,B=2,C=3,D=4,E=5;当我随意使用A 2020-11-01 …