早教吧作业答案频道 -->数学-->
圆(要解答思路)(1410:26:43)四边形ABCD内接于圆,则∠A、∠B、∠C、∠D的度数比可以是( )A.1∶2∶3∶4 B.7∶5∶10∶8C.13∶1∶5∶17 D.1∶3∶2∶4
题目详情
圆(要解答思路) (14 10:26:43)
四边形ABCD内接于圆,则∠A、∠B、∠C、∠D
的度数比可以是( )
A.1∶2∶3∶4 B.7∶5∶10∶8
C.13∶1∶5∶17 D.1∶3∶2∶4
四边形ABCD内接于圆,则∠A、∠B、∠C、∠D
的度数比可以是( )
A.1∶2∶3∶4 B.7∶5∶10∶8
C.13∶1∶5∶17 D.1∶3∶2∶4
▼优质解答
答案和解析
答案:C
因为对角互补的四边形一定是圆的内接四边形,
所以你只要看角A+角C=角B+角D就可以了.
证明:对角互补的四边形一定是圆的内接四边形
已知:四边形ABCD中,∠BAD+∠BCD=180°
求证:四边形ABCD内接于圆.
证明:假设四边形ABCD不内接于圆,过B、A、D三点作⊙O,则点C不在⊙O上.
(1)如果点C在⊙O外,连结AC交⊙O于点P,连结DP、BP,
则∠APD>∠ACD,∠APB>∠ACB
∴∠APD+∠APB>∠ACD+∠ACB
即∠DPB>∠BCD
∵西边形ABPD内接于⊙O,
∴∠BAD+∠BPD=180°
∴∠BAD+∠BCD<180°
这与已知∠BAD+∠BCD=180°相矛盾,所以点C不可能在⊙O外.
(2)如果点C在⊙O内,连结AC并延长交⊙O于点Q,连结DQ,CQ,
〔一下用类似的方法证明点C不可能在⊙O内〕
由(1)和(2)知,点C只能在⊙O上,即假设不成立.
∴四边形ABCD内接于圆.
因为对角互补的四边形一定是圆的内接四边形,
所以你只要看角A+角C=角B+角D就可以了.
证明:对角互补的四边形一定是圆的内接四边形
已知:四边形ABCD中,∠BAD+∠BCD=180°
求证:四边形ABCD内接于圆.
证明:假设四边形ABCD不内接于圆,过B、A、D三点作⊙O,则点C不在⊙O上.
(1)如果点C在⊙O外,连结AC交⊙O于点P,连结DP、BP,
则∠APD>∠ACD,∠APB>∠ACB
∴∠APD+∠APB>∠ACD+∠ACB
即∠DPB>∠BCD
∵西边形ABPD内接于⊙O,
∴∠BAD+∠BPD=180°
∴∠BAD+∠BCD<180°
这与已知∠BAD+∠BCD=180°相矛盾,所以点C不可能在⊙O外.
(2)如果点C在⊙O内,连结AC并延长交⊙O于点Q,连结DQ,CQ,
〔一下用类似的方法证明点C不可能在⊙O内〕
由(1)和(2)知,点C只能在⊙O上,即假设不成立.
∴四边形ABCD内接于圆.
看了 圆(要解答思路)(1410:...的网友还看了以下:
脱式计算.26×50÷26×5021×(230-192÷4)118+306÷17+265560-( 2020-04-07 …
若三点A(2,2)B(a,0)C(0,b)(ab不=0)共线,则(1/a)+(1/b)的值等于( 2020-05-16 …
已知关于X的一元二次方程x^2+2(k-1)x+k^2-1=0有两个不相等的实数根已知关于x的一元 2020-05-16 …
已知2=2,2+5=7=1/2*(2+5)*2,2+5+8=15=1/2*(2+8)*3,2+5+ 2020-07-19 …
(x-2)^2=9(x+3)(步骤)用十字相乘法:x^2-5倍的根号2*x+83x^2-2x-1= 2020-08-03 …
一些因式分解的题~(1)(x^2+y^2)^2-(z^2-x^2)^2-(y^2+z^2)^2(2) 2020-11-01 …
1.已知n为非负整数,求证:(1+1/3)(1+1/9)(1+1/81)…(1+1/3^2n)=2/ 2020-12-07 …
1.用度分秒表示48.26度2.用度表示37度24分36秒3.39度26分+32度43分4.(27度 2021-01-08 …
初一数学题1.用度分秒表示48.26度2.用度表示37度24分36秒3.39度26分+32度43分4 2021-01-08 …
2011淄博抛物线y=ax2+bx+c与y轴交于点C(0-2),与直线y=x交于点A(-2-2)b( 2021-01-10 …