早教吧作业答案频道 -->数学-->
解三角形—在△ABC中,已知a,b,c的对应角为A,B,C,且满足等式tanB=cos(B-C)/[sinA+sin(B-C)].a=2,试求函数y=(b+c)/(bc+1)的最小值.
题目详情
解三角形—在△ABC中,已知a,b,c的对应角为A,B,C,且满足等式tanB=cos(B-C)/[sinA+sin(B-C)].a=2,试求函数y=(b+c)/(bc+1)的最小值.
▼优质解答
答案和解析
∵sinA=sin(B+C)
∴tanB=cos(B-C)/〔sinA+sin(B-C)〕
=(cosC*cosB+sinC*sinB)/[sin(B+C)+sin(B-C)]
=(cosC*cosB+sinC*sinB)/(2*sinC*cosB)
=1/(2tanC)+tanB/2
∴2tanB=1/tanC+tanB
tanB*tanC=1
sinB*sinC/(cosB*cosC)=1
cosB*cosC-sinB*sinC=0
cos(B+C)=0
∴cosA=0
∴∠A=90° 是直角三角形
c^2+b^2=a^2=4≥2bc
y=(b+c)/(bc+1)≥2√bc/(bc+1)
令t=√bc≤√2,
y≥2t/(t^2+1)
显然f(x)=2t/(t^2+1)是减函数,这个你应该知道
所以当t取最大值√2时,ymin=2√2/3
∴tanB=cos(B-C)/〔sinA+sin(B-C)〕
=(cosC*cosB+sinC*sinB)/[sin(B+C)+sin(B-C)]
=(cosC*cosB+sinC*sinB)/(2*sinC*cosB)
=1/(2tanC)+tanB/2
∴2tanB=1/tanC+tanB
tanB*tanC=1
sinB*sinC/(cosB*cosC)=1
cosB*cosC-sinB*sinC=0
cos(B+C)=0
∴cosA=0
∴∠A=90° 是直角三角形
c^2+b^2=a^2=4≥2bc
y=(b+c)/(bc+1)≥2√bc/(bc+1)
令t=√bc≤√2,
y≥2t/(t^2+1)
显然f(x)=2t/(t^2+1)是减函数,这个你应该知道
所以当t取最大值√2时,ymin=2√2/3
看了 解三角形—在△ABC中,已知...的网友还看了以下:
三角形与2次函数a、b、c为△ABC的三边,且关于X的一元二次方程(c-b)x^2+(b-a)x+ 2020-04-27 …
已知点A,B分别是x轴、y轴上的动点,点C,D是某个函数图象上的点,当四边形ABCD(A、B、C、 2020-05-02 …
(2012•河北)如图,四边形ABCD是平行四边形,点A(1,0),B(3,1),C(3,3).反 2020-05-15 …
已知AB=AD,∠B=∠A 求证三角形ABC和三角形ADE是全等三角形,∠B=∠A不是的,是,∠B 2020-05-15 …
已知点A、B分别是x轴、y轴上的动点,点C、D是某个函数图象上的点,当四边形ABCD(A、B、C、 2020-06-11 …
已知点A.B分别是x轴,y轴上的动点,点C.D是某函数图像上的点,当四边形ABCD(A.B.C.D 2020-07-03 …
下列推测合理的是:f(x)=是增函数,则f'(x)>0a>b(a,b属于R),则a+2i>b+2i 2020-07-30 …
函数题,A是不是B的函数(1)A等边三角形的面积B等边三角形的边长这两者是不是函数关系,A是不是B 2020-08-03 …
我们规定:形如y=ax+k/x+b(a、b、k为常数,且k≠ab)的函数叫做“奇特函数”.当a=b= 2020-11-06 …
给这几个命题的证明,1.若f(x+a)=f(b-x),对于x∈R恒成立,则y=f(x)的图象关于直线 2020-11-11 …