早教吧作业答案频道 -->数学-->
已知x>0,y>0,且x^2+y^2/2=1,求x根号(1+y^2)的最大值
题目详情
已知x>0,y>0,且x^2+y^2/2=1,求x根号(1+y^2)的最大值
▼优质解答
答案和解析
设x=cosα,y=√2sinα,0<α<π/2
x√(1+y^2)=cosα√[1+2(sinα)^2]
=√[(cosα)^2+2(sinαcosα)^2]
=√{(cosα)^2+(1/2)[sin(2α)]^2}
=√{(1/2)[1+cos(2α)]+(1/2)[sin(2α)]^2}
=√(1/2)√{1+cos(2α)+[sin(2α)]^2}
=√(1/2)√{2+cos(2α)-[cos(2α)]^2}
=√(1/2)√{-[cos(2α)-1/2]^2+9/4}
0<α<π/2
0<2α<π
-1<cos(2α)<1
-3/2<cos(2α)-1/2<1/2
0≤[cos(2α)-1/2]^2<1/4或0≤[cos(2α)-1/2]^2<9/4
0≤[cos(2α)-1/2]^2<9/4
-9/4<-[cos(2α)-1/2]^2≤0
0<9/4-[cos(2α)-1/2]^2≤9/4
0<√{9/4-[cos(2α)-1/2]^2}≤3/2
0<x√(1+y^2)≤(3/2)√(1/2)
最大值(3/2)√(1/2)
x√(1+y^2)=cosα√[1+2(sinα)^2]
=√[(cosα)^2+2(sinαcosα)^2]
=√{(cosα)^2+(1/2)[sin(2α)]^2}
=√{(1/2)[1+cos(2α)]+(1/2)[sin(2α)]^2}
=√(1/2)√{1+cos(2α)+[sin(2α)]^2}
=√(1/2)√{2+cos(2α)-[cos(2α)]^2}
=√(1/2)√{-[cos(2α)-1/2]^2+9/4}
0<α<π/2
0<2α<π
-1<cos(2α)<1
-3/2<cos(2α)-1/2<1/2
0≤[cos(2α)-1/2]^2<1/4或0≤[cos(2α)-1/2]^2<9/4
0≤[cos(2α)-1/2]^2<9/4
-9/4<-[cos(2α)-1/2]^2≤0
0<9/4-[cos(2α)-1/2]^2≤9/4
0<√{9/4-[cos(2α)-1/2]^2}≤3/2
0<x√(1+y^2)≤(3/2)√(1/2)
最大值(3/2)√(1/2)
看了 已知x>0,y>0,且x^2...的网友还看了以下:
已知x>0,y>0且8x+2y-xy=0,求x+y的最小值.为什么我求的是16啊?这是我求的过程: 2020-04-27 …
已知8+根号3=X+Y,其中X是一个整数,且0小于Y小于1,请你求出2x+(根号3-y)的2009 2020-05-16 …
已知x,y是实数,且y=根号(x-0.5)+根号(0.5-x)+0.5,求5x+|2y-1|减(y 2020-05-24 …
已知x>0,y>0,a=x+y,b=根号下x2+xy+y2,c=m根号下xy问是否存在正数使得对于 2020-06-12 …
已知根号x(根号x+根号y)=3根号y(根号x+5根号y),求完整题:已知xy为正数,√x(√x+ 2020-07-21 …
已知x>0,y>0,且有根号x(根号x+2根号y)=根号y(6根号x+5根号y)求x+根号xy-y 2020-07-24 …
已知两直线根号3x-y-1=0,x+y+5=0,则量直线的夹角是已知两直线根号3x-y-1=0,x 2020-07-25 …
已知0小于x小于1,0小于y小于1,求证根号x^2+y^2+根号x^2+(1-y)^2+根号(1- 2020-08-01 …
已知函数y=x+a/x有如下性质如果常数a>0那么该函数在(0,根号a]上是减函数在[根号a,正无穷 2020-11-18 …
仿照例题,已知(X-1)^2+根号下Y-3=0,求X,Y的值,∵(X-1)^2≥0根号下Y-3≥0∴ 2020-12-31 …