早教吧作业答案频道 -->数学-->
积分轮换对称性:对换x和y,边界方程不变即积分区域不变即可,那么对于被积函数有要求对换x和y,被积函数值不变吗?还有积分区域关于y=x对称,这个也属于轮换对称性吗?它有和轮换对称性相同
题目详情
积分轮换对称性:对换x和y,边界方程不变即积分区域不变即可,那么对于被积函数有要求对换x和y,被积函数值不变吗?还有积分区域关于y=x对称,这个也属于轮换对称性吗?它有和轮换对称性相同的结论吗?
请不要复制别人的
请不要复制别人的
▼优质解答
答案和解析
坐标的轮换对称性,简单的说就是将坐标轴重新命名,如果积分区间的函数表达不变,则被积函数中的x,y,z也同样作变化后,积分值保持不变.
(1) 对于曲面积分,积分曲面为u(x,y,z)=0,如果将函数u(x,y,z)=0中的x,y,z换成y,z,x后,u(y,z,x)仍等于0,即u(y,z,x)=0,也就是积分曲面的方程没有变,那么在这个曲面上的积分 ∫∫f(x,y,z)dS=∫∫f(y,z,x)dS;如果将函数u(x,y,z)=0中的x,y,z换成y,x,z后,u(y,x,z)=0,那么在这个曲面上的积分 ∫∫f(x,y,z)dS=∫∫f(y,x,z)dS;如果将函数u(x,y,z)=0中的x,y,z换成z,x,y后,u(z,x,y)=0,那么在这个曲面上的积分 ∫∫f(x,y,z)dS=∫∫f(z,x,y)dS ,同样可以进行多种其它的变换.
(2) 对于第二类曲面积分只是将dxdy也同时变换即可.比如:如果将函数u(x,y,z)=0中的x,y,z换成y,z,x后,u(y,z,x)=0,那么在这个曲面上的积 分 ∫∫f(x,y,z)dxdy=∫∫f(y,z,x)dydz,∫∫f(x,y,z)dydz=∫∫f(y,z,x)dzdx,∫∫f(x,y,z)dzdx=∫∫f(y,z,x)dxdy.
(3) 将1中积分曲面中的z去掉,就变成了曲线积分满足的轮换对称性:积分曲线为u(x,y)=0,如果将函数u(x,y)=0中的x,y换成y,x后,仍满足u(y,x)= 0,那么在这个曲线上的积分 ∫∫f(x,y)ds=∫∫f(y,x)ds;实际上如果将函数u(x,y)=0中的x,y换成y,x后,仍满足u(y,x)=0,则意味着积分曲线关于直线y=x对称 .第二类和(2)总结相同.
(4) 二重积分和三重积分都和(1)的解释类似,也是看积分域函数将x,y,z更换顺序后,相当于将坐标轴重新命名,积分取间没有发生变化,则被积函数作相应变换后,积分值不变.
注意两点,一是被积函数关于某一变量的奇偶性,二是看一下积分区域,是否关于该变量坐标轴两边对称.
比如说2维空间,如果被积函数是X的积函数,那么考察积分区域,是否关于Y对称.如果想要考察X,Y坐标是否可对换,那么就需要考察积分区域是否关于y=x对称.
三维空间类似,如果被积函数是X的积函数,那么考察积分区域,看一下是否关于YZ平面对称.所谓的轮换对称,如果要满足的话,就需要三者之间都可互换了.
但是要注意,这里有一个特殊情况,就是对坐标的曲面积分,例如∫∫X^2dydz,如果x^2是关于YZ平面对称,x^2是偶函数,则这个积分是零,原因是对于坐标的曲面积分,前面和后面的积分符号刚好相反.
(1) 对于曲面积分,积分曲面为u(x,y,z)=0,如果将函数u(x,y,z)=0中的x,y,z换成y,z,x后,u(y,z,x)仍等于0,即u(y,z,x)=0,也就是积分曲面的方程没有变,那么在这个曲面上的积分 ∫∫f(x,y,z)dS=∫∫f(y,z,x)dS;如果将函数u(x,y,z)=0中的x,y,z换成y,x,z后,u(y,x,z)=0,那么在这个曲面上的积分 ∫∫f(x,y,z)dS=∫∫f(y,x,z)dS;如果将函数u(x,y,z)=0中的x,y,z换成z,x,y后,u(z,x,y)=0,那么在这个曲面上的积分 ∫∫f(x,y,z)dS=∫∫f(z,x,y)dS ,同样可以进行多种其它的变换.
(2) 对于第二类曲面积分只是将dxdy也同时变换即可.比如:如果将函数u(x,y,z)=0中的x,y,z换成y,z,x后,u(y,z,x)=0,那么在这个曲面上的积 分 ∫∫f(x,y,z)dxdy=∫∫f(y,z,x)dydz,∫∫f(x,y,z)dydz=∫∫f(y,z,x)dzdx,∫∫f(x,y,z)dzdx=∫∫f(y,z,x)dxdy.
(3) 将1中积分曲面中的z去掉,就变成了曲线积分满足的轮换对称性:积分曲线为u(x,y)=0,如果将函数u(x,y)=0中的x,y换成y,x后,仍满足u(y,x)= 0,那么在这个曲线上的积分 ∫∫f(x,y)ds=∫∫f(y,x)ds;实际上如果将函数u(x,y)=0中的x,y换成y,x后,仍满足u(y,x)=0,则意味着积分曲线关于直线y=x对称 .第二类和(2)总结相同.
(4) 二重积分和三重积分都和(1)的解释类似,也是看积分域函数将x,y,z更换顺序后,相当于将坐标轴重新命名,积分取间没有发生变化,则被积函数作相应变换后,积分值不变.
注意两点,一是被积函数关于某一变量的奇偶性,二是看一下积分区域,是否关于该变量坐标轴两边对称.
比如说2维空间,如果被积函数是X的积函数,那么考察积分区域,是否关于Y对称.如果想要考察X,Y坐标是否可对换,那么就需要考察积分区域是否关于y=x对称.
三维空间类似,如果被积函数是X的积函数,那么考察积分区域,看一下是否关于YZ平面对称.所谓的轮换对称,如果要满足的话,就需要三者之间都可互换了.
但是要注意,这里有一个特殊情况,就是对坐标的曲面积分,例如∫∫X^2dydz,如果x^2是关于YZ平面对称,x^2是偶函数,则这个积分是零,原因是对于坐标的曲面积分,前面和后面的积分符号刚好相反.
看了 积分轮换对称性:对换x和y,...的网友还看了以下:
∫上1下0f(xt)dt求导为什么要用替换法?求理解一般总会要求换元成u=xt,我第一反应也是这样 2020-05-21 …
今天在计算一个受力问题时,有这样一个单位要转换,kg/km要换算成N/m,请问这个要怎么换算,有什 2020-06-09 …
体积的换算长度2799mm,宽度2800mm,厚20mm,我算出面积为7.83,乘于20等体积,想 2020-07-13 …
积分轮换对称性:对换x和y,边界方程不变即积分区域不变即可,那么对于被积函数有要求对换x和y,被积 2020-08-01 …
三角换元求值域当令X=.sint时那个角T的范围有要求吗?是不是要保证sint大于0,还是有其他什么 2020-11-23 …
换水表要钱吗?自来水表看不清了,一片模糊,如果要换水表,自来水公司要收费吗?我在辽宁大连,不知收多少 2020-11-29 …
置换反应需要元素全部被置换出来吗钠加水出于置换反应吗Na+H2O——>NaOH+H2其中氢没有被全部 2021-01-07 …
关于化学平衡常数影响因素为什么浓度不会对换平衡常数有影响,不是浓度变了,C(**)不也变了,K不是要 2021-01-07 …
英语翻译想翻译下列句子.要翻译成英文跟韩文,1、您好!我为您服务可以吗?2、要换人吗?3、价钱合适吗 2021-01-07 …
三角换元求值域问题令X=.令那个值应该怎么计算当令X=.sint时那个角T的范围有要求吗?是不是要保 2021-02-18 …