早教吧作业答案频道 -->数学-->
分解因式的方法除了提公因式和运用公式法以外还有什么方法?RT
题目详情
分解因式的方法除了提公因式和运用公式法以外还有什么方法?
RT
RT
▼优质解答
答案和解析
还有1配方法,2十字相乘法
配方法过程
1.转化: 将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式)化为一般形式
2.移项: 常数项移到等式右边
3.系数化1: 二次项系数化为1
4.配方: 等号左右两边同时加上一次项系数一半的平方
5.求 用直接开平方法求解 整理 (即可得到原方程的根)
代数式表示方法:注(^2是平方的意思.)
ax^2+bx+c=a(x+b/2a)^2+(4ac-b^2)/4a=a[(x+m)^2-n^2]=a(x+m+n)*(x+m-n)
例:解方程2x^2+4=6x
1. 2x^2-6x+4=0
2. x^2-3x+2=0
3. x^2-3x=-2
4. x^2-3x+2.25=0.25 (+2.25:加上3一半的平方,同时-2也要加上3一半的平方让等式两边相等)
5. (x-1.5)^2=0.25 (a^2+2b+1=0 即 (a+1)^2=0)
6. x-1.5=±0.5
7. x1=2
x2=1 (一元二次方程通常有两个解,X1 X2)
十字相乘法
十字相乘法十字相乘法能把某些二次三项式分解因式.要务必注意各项系数的符号.
十字相乘法的方法简单点来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数. 十字相乘法能把某些二次三项式分解因式.这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1.a2,把常数项c分解成两个因数c1,c2的积c1乘c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果:ax^2+bx+c=(a1x+c1)(a2x+c2),在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号.基本式子:x^2+(p+q)χ+pq=(χ+p)(χ+q)所谓十字相乘法,就是运用乘法公式(x+a)(x+b)=x^2+(a+b)x+ab的逆运算来进行因式分解.比如说:把x^2+7x+12进行因式分解. . 上式的常数12可以分解为3×4,而3+4又恰好等于一次项的系数7,所以上式可以分解为:x^2+7x+12=(x+3)(x+4) . 又如:分解因式:a^2+2a-15,上式的常数-15可以分解为5×(-3).而5+(-3)又恰好等于一次项系数2,所以a^2+2a-15=(a+5)(a-3). 十字相乘法
讲 x^2-3x+2=如下: x -1 ╳ x -2 左边x乘x= x^2 右边-1乘-2=2 中间-1乘x+(-2)乘x(对角)=-3x 上边的【x+(-1)】乘下边的【x+(-2)】 就等于(x-1)*(x-2) x^2-3x+2=(x-1)*(x-2)
编辑本段通俗方法
方法
先将二次项分解成(1 X 二次项系数),将常数项分解成(1 X 常数项)然后以下面的格式写 1 第三次a=2 b=1 c=二次项系数÷a d=常数项÷b 第四次a=2 b=2 c=二次项系数÷a d=常数项÷b 第五次a=2 b=3 c=二次项系数÷a d=常数项÷b 第六次a=3 b=2 c=二次项系数÷a d=常数项÷b 第七次a=3 b=3 c=二次项系数÷a d=常数项÷b . 依此类推 直到(ad+cb=一次项系数)为止.最终的结果格式为(ax+b)(cx+d)
例
:(^2代表平方) a^2x^2+ax-42 首先,我们看看第一个数,是a↑2,代表是两个a相乘得到的,则推断出(a ×+?)×(a ×+?) 然后我们再看第二项,+a 这种式子是经过合并同类项以后得到的结果,所以推断出使两项式×两项式. 再看最后一项是-42 ,-42是-6×7 或者6×-7也可以分解成 -21×2 或者21×-2 首先,21和2无论正负,合并后都不可能是1 只可能是-19或者19,所以排除后者. 然后,在确定是-7×6还是7×-6. (a×+(-7))×(a×+6)=a^2-a-42(计算过程省略) 得到结果与原来结果不相符,原式+a 变成了-a 再算: (a×+7)×(a×+(-6))=a^2+a-42 正确,所以a^2x^2+ax-42就被分解成为(ax+7)×(ax-6),这就是通俗的十字相乘法分解因式.
编辑本段例题解析
例1
把2x^2-7x+3分解因式. 分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分 别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数. 分解二次项系数(只取正因数 因为取负因数的结果与正因数结果相同! 2=1×2=2×1; 分解常数项: 3=1×3=3×1=(-3)×(-1)=(-1)×(-3). 用画十字交叉线方法表示下列四种情况: 1 1 ╳ 2 3 1×3+2×1 =5 1 3 ╳ 2 1 1×1+2×3 =7 1 -1 ╳ 2 -3 1×(-3)+2×(-1) =-5 1 -3 ╳ 2 -1 1×(-1)+2×(-3) =-7 经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7. 解 2x^2-7x+3=(x-3)(2x-1) 一般地,对于二次三项式ax+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下: a1 c1 ╳ a2 c2 a1c2+a2c1 按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax^2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即 ax^2+bx+c=(a1x+c1)(a2x+c2). 像这种借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法.
例2
把6x^2-7x-5分解因式. 分析:按照例1的方法,分解二次项系数6及常数项-5,把它们分别排列,可有8种不同的排列方法,其中的一种 2 1 ╳ 3 -5 2×(-5)+3×1=-7 是正确的,因此原多项式可以用十字相乘法分解因式. 解 6x2-7x-5=(2x+1)(3x-5) 指出:通过例1和例2可以看到,运用十字相乘法把一个二次项系数不是1的二次三项式因式分解,往往要经过多次观察,才能确定是否可以用十字相乘法分解因式. 对于二次项系数是1的二次三项式,也可以用十字相乘法分解因式,这时只需考虑如何把常数项分解因数.例如把x^2+2x-15分解因式,十字相乘法是 1 -3 ╳ 1 5 1×5+1×(-3)=2 所以x+2x-15=(x-3)(x+5).
例3
把5x^2+6xy-8y^2分解因式. 分析:这个多项式可以看作是关于x的二次三项式,把-8y^2看作常数项,在分解二次项及常数项系数时,只需分解5与-8,用十字交叉线分解后,经过观察,选取合适的一组,即 1 2 ╳ 5 -4 1×(-4)+5×2=6 解 5x+6xy-8y=(x+2y)(5x-4y). 指出:原式分解为两个关于x,y的一次式.
例4
把(x-y)(2x-2y-3)-2分解因式. 分析:这个多项式是两个因式之积与另一个因数之差的形式,只有先进行多项式的乘法运算,把变形后的多项式再因式分解. 问:以上乘积的因式是什么特点,用什么方法进行多项式的乘法运算最简便? 答:第二个因式中的前两项如果提出公因式2,就变为2(x-y),它是第一个因式的二倍,然后把(x-y)看作一个整体进行乘法运算,可把原多项式变形为关于(x-y)的二次三项式,就可以用十字相乘法分解因式了. 解 (x-y)(2x-2y-3)-2 =(x-y)[2(x-y)-3]-2 =2(x-y) ^2-3(x-y)-2 1 -2 ╳ 2 1 1×1+2×(-2)=-3 =[(x-y)-2][2(x-y)+1] =(x-y-2)(2x-2y+1). 指出:把(x-y)看作一个整体进行因式分解,这又是运用了数学中的“整体”思想方法.
例5
x^2+2x-15 分析:常数项(-15)
配方法过程
1.转化: 将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式)化为一般形式
2.移项: 常数项移到等式右边
3.系数化1: 二次项系数化为1
4.配方: 等号左右两边同时加上一次项系数一半的平方
5.求 用直接开平方法求解 整理 (即可得到原方程的根)
代数式表示方法:注(^2是平方的意思.)
ax^2+bx+c=a(x+b/2a)^2+(4ac-b^2)/4a=a[(x+m)^2-n^2]=a(x+m+n)*(x+m-n)
例:解方程2x^2+4=6x
1. 2x^2-6x+4=0
2. x^2-3x+2=0
3. x^2-3x=-2
4. x^2-3x+2.25=0.25 (+2.25:加上3一半的平方,同时-2也要加上3一半的平方让等式两边相等)
5. (x-1.5)^2=0.25 (a^2+2b+1=0 即 (a+1)^2=0)
6. x-1.5=±0.5
7. x1=2
x2=1 (一元二次方程通常有两个解,X1 X2)
十字相乘法
十字相乘法十字相乘法能把某些二次三项式分解因式.要务必注意各项系数的符号.
十字相乘法的方法简单点来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数. 十字相乘法能把某些二次三项式分解因式.这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1.a2,把常数项c分解成两个因数c1,c2的积c1乘c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果:ax^2+bx+c=(a1x+c1)(a2x+c2),在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号.基本式子:x^2+(p+q)χ+pq=(χ+p)(χ+q)所谓十字相乘法,就是运用乘法公式(x+a)(x+b)=x^2+(a+b)x+ab的逆运算来进行因式分解.比如说:把x^2+7x+12进行因式分解. . 上式的常数12可以分解为3×4,而3+4又恰好等于一次项的系数7,所以上式可以分解为:x^2+7x+12=(x+3)(x+4) . 又如:分解因式:a^2+2a-15,上式的常数-15可以分解为5×(-3).而5+(-3)又恰好等于一次项系数2,所以a^2+2a-15=(a+5)(a-3). 十字相乘法
讲 x^2-3x+2=如下: x -1 ╳ x -2 左边x乘x= x^2 右边-1乘-2=2 中间-1乘x+(-2)乘x(对角)=-3x 上边的【x+(-1)】乘下边的【x+(-2)】 就等于(x-1)*(x-2) x^2-3x+2=(x-1)*(x-2)
编辑本段通俗方法
方法
先将二次项分解成(1 X 二次项系数),将常数项分解成(1 X 常数项)然后以下面的格式写 1 第三次a=2 b=1 c=二次项系数÷a d=常数项÷b 第四次a=2 b=2 c=二次项系数÷a d=常数项÷b 第五次a=2 b=3 c=二次项系数÷a d=常数项÷b 第六次a=3 b=2 c=二次项系数÷a d=常数项÷b 第七次a=3 b=3 c=二次项系数÷a d=常数项÷b . 依此类推 直到(ad+cb=一次项系数)为止.最终的结果格式为(ax+b)(cx+d)
例
:(^2代表平方) a^2x^2+ax-42 首先,我们看看第一个数,是a↑2,代表是两个a相乘得到的,则推断出(a ×+?)×(a ×+?) 然后我们再看第二项,+a 这种式子是经过合并同类项以后得到的结果,所以推断出使两项式×两项式. 再看最后一项是-42 ,-42是-6×7 或者6×-7也可以分解成 -21×2 或者21×-2 首先,21和2无论正负,合并后都不可能是1 只可能是-19或者19,所以排除后者. 然后,在确定是-7×6还是7×-6. (a×+(-7))×(a×+6)=a^2-a-42(计算过程省略) 得到结果与原来结果不相符,原式+a 变成了-a 再算: (a×+7)×(a×+(-6))=a^2+a-42 正确,所以a^2x^2+ax-42就被分解成为(ax+7)×(ax-6),这就是通俗的十字相乘法分解因式.
编辑本段例题解析
例1
把2x^2-7x+3分解因式. 分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分 别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数. 分解二次项系数(只取正因数 因为取负因数的结果与正因数结果相同! 2=1×2=2×1; 分解常数项: 3=1×3=3×1=(-3)×(-1)=(-1)×(-3). 用画十字交叉线方法表示下列四种情况: 1 1 ╳ 2 3 1×3+2×1 =5 1 3 ╳ 2 1 1×1+2×3 =7 1 -1 ╳ 2 -3 1×(-3)+2×(-1) =-5 1 -3 ╳ 2 -1 1×(-1)+2×(-3) =-7 经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7. 解 2x^2-7x+3=(x-3)(2x-1) 一般地,对于二次三项式ax+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下: a1 c1 ╳ a2 c2 a1c2+a2c1 按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax^2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即 ax^2+bx+c=(a1x+c1)(a2x+c2). 像这种借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法.
例2
把6x^2-7x-5分解因式. 分析:按照例1的方法,分解二次项系数6及常数项-5,把它们分别排列,可有8种不同的排列方法,其中的一种 2 1 ╳ 3 -5 2×(-5)+3×1=-7 是正确的,因此原多项式可以用十字相乘法分解因式. 解 6x2-7x-5=(2x+1)(3x-5) 指出:通过例1和例2可以看到,运用十字相乘法把一个二次项系数不是1的二次三项式因式分解,往往要经过多次观察,才能确定是否可以用十字相乘法分解因式. 对于二次项系数是1的二次三项式,也可以用十字相乘法分解因式,这时只需考虑如何把常数项分解因数.例如把x^2+2x-15分解因式,十字相乘法是 1 -3 ╳ 1 5 1×5+1×(-3)=2 所以x+2x-15=(x-3)(x+5).
例3
把5x^2+6xy-8y^2分解因式. 分析:这个多项式可以看作是关于x的二次三项式,把-8y^2看作常数项,在分解二次项及常数项系数时,只需分解5与-8,用十字交叉线分解后,经过观察,选取合适的一组,即 1 2 ╳ 5 -4 1×(-4)+5×2=6 解 5x+6xy-8y=(x+2y)(5x-4y). 指出:原式分解为两个关于x,y的一次式.
例4
把(x-y)(2x-2y-3)-2分解因式. 分析:这个多项式是两个因式之积与另一个因数之差的形式,只有先进行多项式的乘法运算,把变形后的多项式再因式分解. 问:以上乘积的因式是什么特点,用什么方法进行多项式的乘法运算最简便? 答:第二个因式中的前两项如果提出公因式2,就变为2(x-y),它是第一个因式的二倍,然后把(x-y)看作一个整体进行乘法运算,可把原多项式变形为关于(x-y)的二次三项式,就可以用十字相乘法分解因式了. 解 (x-y)(2x-2y-3)-2 =(x-y)[2(x-y)-3]-2 =2(x-y) ^2-3(x-y)-2 1 -2 ╳ 2 1 1×1+2×(-2)=-3 =[(x-y)-2][2(x-y)+1] =(x-y-2)(2x-2y+1). 指出:把(x-y)看作一个整体进行因式分解,这又是运用了数学中的“整体”思想方法.
例5
x^2+2x-15 分析:常数项(-15)
看了 分解因式的方法除了提公因式和...的网友还看了以下:
关于运动的合成与分解,以下说法不正确的是()A.由两个分运动求合运动,合运动是唯一确定的B.由合运 2020-05-17 …
空运提单为什么不可以作为物权凭证?为什么海运提单可以作为物权凭证,但是空运提单不可以?这中间有什么 2020-05-20 …
西方的启蒙运动以解放人为目的,建立和发展了保护人的自由平等的普世思想。中国的新文化运动以“民主”和 2020-06-18 …
英语翻译文章从利用保函换清洁提单,倒签提单和预借提单以及无单放货等现象中反应了海运提单的各种缺陷, 2020-06-25 …
海运提单作成指示抬头时,提单收货人一栏,可以填写??海运提单作成指示抬头时,提单收货人一栏,可以填 2020-08-04 …
英语翻译有关上述提单项下货物海运事宜,由于我司不慎在开具海运发票时少开了部分海运费和DDU费用,在此 2020-11-06 …
按照提单上是否记载收货人的名称,提单可以分为(多选题)A.记名提单、不记名提单和指示提单B.已装船提 2020-11-28 …
为什么要提高交通工具的最大行驶速度,要减小运动阻力用F=MA可以,因为F-f=MA所以加速度变小,可 2020-11-30 …
如图所示,滑雪运动员保持身体姿势不变从斜坡滑下后,用力撑杆,飞速向前滑去,请根据此情景提出三个与物理 2020-12-23 …
结合背景材料进行探究,能够发现问题、提出问题,并综合运用有关知识分析问题、解决问题,创造性提出解决问 2021-01-21 …