早教吧作业答案频道 -->数学-->
用二项式定理证明(1+1/n)^n的单调性
题目详情
用二项式定理证明(1+1/n)^n的单调性
▼优质解答
答案和解析
很高兴为您解答问题
首先需要二项式定理:
(a+b)^n=∑ C(i=0 –> i=n)n i a^(n-i) * b^i (式一)
用数学归纳法证此定理:
n=1 (a+b)^1 a^(1-0)*b^0+a^(1-1)*b^1
a+b
故此,n=1时,式一成立.
设n1为任一自然数,假设n=n1时,(式一)成立 ,即:
(a+b)^n1=∑ C(i=0 –> i=n1)n1 i a^(n1-i) * b^i (式二)
则,当n=n1+1时:
式二两端同乘(a+b)
[(a+b)^n1]*(a+b)=[∑ C(i=0 –> i=n1)n1 i a^(n1-i) * b^i]*(a+b)
=> (a+b)^(n1+1)= ∑ C(i=0 –> i=(n1+1))(n1+1) i a^((n1+1)-i) * b^i ( 据乘法分配律)
因此二项式定理(即式一成立)
下面用二项式定理计算这一极限:
(1+1/n)^n (式一)
用二项式展开得:
(1+1/n)^n = 1^n+(n/1)(1/n)+[(n(n-1))/(2*1)]*(1/n)^2+[(n(n-1)(n-2))/(3*2*1)]*(1/n)^3 + … +[(n(n-1)(n-2) …3)/((n-2)(n-1) … 2*1)]*(1/n)^(n-2)+ [(n(n-1)(n-2) …3*2)/((n-1)(n-2)(n-1) … 2*1)]*(1/n)^(n-1)+ [(n(n-1)(n-2) …3*2*1)/(n(n-1)(n-2)(n-1) … 2*1)]*(1/n)^n
由于二项展开式系数项的分子乘积的最高次项与(1/n)的次数相同,而系数为1,因此,最高次项与(1/n)的相应次方刚好相约,得1,低次项与1/n的相应次方相约后,分子剩下常数,而分母总余下n的若干次方,当n -> +∞,得0.因此总的结果是当n -> +∞,二项展开式系数项的各项分子乘积与(1/n)的相应项的次方相约,得1.余下分母.于是式一化为:
(1+1/n)^n =1+1+1/2!+1/3!+1/4!+1/5!+1/6!+ … + 1/n!(式二)
当n -> +∞时,你可以用计算机,或笔计算此值.这一数值定义为e.
补充:
将式二和公比为1/2的等比数列比较,其每一项都小于此等比数列,而此等比数列收敛,因此,式二必定收敛于一固定数值.
首先需要二项式定理:
(a+b)^n=∑ C(i=0 –> i=n)n i a^(n-i) * b^i (式一)
用数学归纳法证此定理:
n=1 (a+b)^1 a^(1-0)*b^0+a^(1-1)*b^1
a+b
故此,n=1时,式一成立.
设n1为任一自然数,假设n=n1时,(式一)成立 ,即:
(a+b)^n1=∑ C(i=0 –> i=n1)n1 i a^(n1-i) * b^i (式二)
则,当n=n1+1时:
式二两端同乘(a+b)
[(a+b)^n1]*(a+b)=[∑ C(i=0 –> i=n1)n1 i a^(n1-i) * b^i]*(a+b)
=> (a+b)^(n1+1)= ∑ C(i=0 –> i=(n1+1))(n1+1) i a^((n1+1)-i) * b^i ( 据乘法分配律)
因此二项式定理(即式一成立)
下面用二项式定理计算这一极限:
(1+1/n)^n (式一)
用二项式展开得:
(1+1/n)^n = 1^n+(n/1)(1/n)+[(n(n-1))/(2*1)]*(1/n)^2+[(n(n-1)(n-2))/(3*2*1)]*(1/n)^3 + … +[(n(n-1)(n-2) …3)/((n-2)(n-1) … 2*1)]*(1/n)^(n-2)+ [(n(n-1)(n-2) …3*2)/((n-1)(n-2)(n-1) … 2*1)]*(1/n)^(n-1)+ [(n(n-1)(n-2) …3*2*1)/(n(n-1)(n-2)(n-1) … 2*1)]*(1/n)^n
由于二项展开式系数项的分子乘积的最高次项与(1/n)的次数相同,而系数为1,因此,最高次项与(1/n)的相应次方刚好相约,得1,低次项与1/n的相应次方相约后,分子剩下常数,而分母总余下n的若干次方,当n -> +∞,得0.因此总的结果是当n -> +∞,二项展开式系数项的各项分子乘积与(1/n)的相应项的次方相约,得1.余下分母.于是式一化为:
(1+1/n)^n =1+1+1/2!+1/3!+1/4!+1/5!+1/6!+ … + 1/n!(式二)
当n -> +∞时,你可以用计算机,或笔计算此值.这一数值定义为e.
补充:
将式二和公比为1/2的等比数列比较,其每一项都小于此等比数列,而此等比数列收敛,因此,式二必定收敛于一固定数值.
看了 用二项式定理证明(1+1/n...的网友还看了以下:
1/已知等比数列{an}中,a1+a2+a3=40,a4+a5+a6=20,则前9项之和等于2/等 2020-05-13 …
数学公式:1+n+n的平方+n的立方一直加下去.额,高中的知识都还给老师了.n是正数哈大于1的正数 2020-05-13 …
数列an为等差数列an=11d=2sn=35则a1=在等比数列an中已知前四项和为1前八项和为17 2020-05-14 …
n满足一下不等式(1/n+1+1/n+3+1/n+6)>19/36,n为正整数,求n的最大值请知道 2020-07-13 …
同温同体积下,X反应了1/3,平衡后压强增加了5%,求n.我不明白最后那关系式:4/1=(n-5) 2020-07-19 …
证明对任意的正整数n,不等式ln(1/n+1)>1/n^2-1/n^3都成立为什么证明对任意的正整 2020-07-20 …
已知数列{an}得通项公式an=1/n+1+1/n+2+1/n+3+...+1/2n(n∈n*). 2020-07-26 …
财务管理知识1、单利现值P=F/(1+n×i)式中,1/(1+n×i)为单利现值系数.2、单利终值 2020-07-31 …
这个递推关系式怎么求通项、急、急、在线等、An=(n+1)(An-1)/(n-1)、A2=6这个式 2020-08-01 …
z^n+1/(3^n*z^n)n为0到正无穷,试讨论级数收敛性质并求上式乘1/n^2后的级数的收敛半 2020-11-01 …