早教吧作业答案频道 -->数学-->
一条二次函数题一对称轴是直线x=4;二与x轴交点横坐标是整数;三与y轴交点纵坐标是整数;四以三点为顶点的三角形面积为3.求满足上述特点的一个二次函数关系式.
题目详情
一条二次函数题
一 对称轴是直线x=4;
二 与x轴交点横坐标是整数;
三 与y轴交点纵坐标是整数;
四 以三点为顶点的三角形面积为3.
求满足上述特点的一个二次函数关系式.
一 对称轴是直线x=4;
二 与x轴交点横坐标是整数;
三 与y轴交点纵坐标是整数;
四 以三点为顶点的三角形面积为3.
求满足上述特点的一个二次函数关系式.
▼优质解答
答案和解析
设解析式y=a(x-4)^2+b;
设与X轴的一个交点为(x,0),则另一个交点
是(8-x,0)(因为这两点关于x=4对称)
这三角形面积表示为1/2*(8-2x)*b=3;
得出b=6/(8-2x),
所以8-2x只能等于1,2,3,6;
又因为x也是整数,所以x=1,3;
x=1时,b=1;得出一个解析式:y=-3(x-4)^2+1
x=3时,b=3,得出一个:y=-1/3(x-4)^2+3
设与X轴的一个交点为(x,0),则另一个交点
是(8-x,0)(因为这两点关于x=4对称)
这三角形面积表示为1/2*(8-2x)*b=3;
得出b=6/(8-2x),
所以8-2x只能等于1,2,3,6;
又因为x也是整数,所以x=1,3;
x=1时,b=1;得出一个解析式:y=-3(x-4)^2+1
x=3时,b=3,得出一个:y=-1/3(x-4)^2+3
看了 一条二次函数题一对称轴是直线...的网友还看了以下:
直角坐标系中,点A在x轴上,点B在y轴上,∠BAO=60°,AC平分∠BAO交y轴于点C,若AC= 2020-05-14 …
在平面直角坐标系中,射线OE与x的正半轴的夹角为30°,A在OE上,A在第一象限,AB⊥x轴于点B 2020-05-16 …
在直角坐标平面内,满足横坐标是0的点一定在()上,满足纵坐标是0的点一定在()上.若点Q在X轴的正 2020-06-14 …
如图,点A(2,2)在双曲线y1=kx(x>0)上,点C在双曲线y2=-9x(x<0)上,分别过A 2020-06-16 …
如图,点A1的坐标为(1,0),A2在y轴的正半轴上,且∠A1A2O=30°,过点A2作A2A3⊥ 2020-07-09 …
A,B两点是反比例函数Y=K/X(K>0)在第一象限内的图像上的点,过点A作AC垂直X轴,AE垂直 2020-08-01 …
点A、B在数轴上表示的数分别为-12和16.(规定数轴上两点A、B之间的距离记为AB)(1)点C在 2020-08-03 …
数轴上A对应的数为a,B对应的数为b,且满足|a-12|+|b+6|=0,O为原点,(1)求a,b的 2020-08-05 …
如图,三点A,B,D在数轴上,点A,B在数轴上表示的数分别为-12,16.(1)点C在数轴上,满足A 2020-11-19 …
已知AB两点在数轴上表示的数是负5,1.在数轴上有一点C,满足AC等于2BC,则C点表示的数是已知A 2020-11-20 …