早教吧作业答案频道 -->数学-->
如下.由整式的乘法(x+a)(x+b)=x²+ax+bx+ab=x²+(a+b)x+ab可知,x²+(a+b)x+ab=(x+a)(x+b),因此,对于二次三项式x²+mx+n,只要能将常数项n分解成两个因数a,b,使a,b的和恰好等于一次项系
题目详情
如下.
由整式的乘法(x+a)(x+b)=x²+ax+bx+ab=x²+(a+b)x+ab可知,x²+(a+b)x+ab=(x+a)(x+b),因此,对于二次三项式x²+mx+n,只要能将常数项n分解成两个因数a,b,使a,b的和恰好等于一次项系数m,即ab=n,a+b=m,就能将x²+mx+n分解因式.为使分解过程直观,常常采用图示的方法(特么字太多.略……此为新人教版七年级下册数学作业本1 的25页第七题.)
由整式的乘法(x+a)(x+b)=x²+ax+bx+ab=x²+(a+b)x+ab可知,x²+(a+b)x+ab=(x+a)(x+b),因此,对于二次三项式x²+mx+n,只要能将常数项n分解成两个因数a,b,使a,b的和恰好等于一次项系数m,即ab=n,a+b=m,就能将x²+mx+n分解因式.为使分解过程直观,常常采用图示的方法(特么字太多.略……此为新人教版七年级下册数学作业本1 的25页第七题.)
▼优质解答
答案和解析
十字相乘法的方法简单来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数.其实就是运用乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆运算来进行因式分解.
十字相乘法能把某些二次三项式分解因式.对于形如ax²+bx+c=(a1x+c1)(a2x+c2)的整式来说,方法的关键是把二次项系数a分解成两个因数a1,a2的积a1·a2,把常数项c分解成两个因数c1,c2的积c1·c2,并使a1c2+a2c1正好是一次项的系数b,那么可以直接写成结果:ax²+bx+c=(a1x+c1)(a2x+c2).在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号.基本式子:x²+(p+q)χ+pq=(χ+p)(χ+q).
十字相乘法
编辑本段通俗方法
例:
a²x²+ax-42
首先,我们看看第一个数,是a²,代表是两个a相乘得到的,则推断出(a ×+?)×(a ×+?)
然后我们再看第二项,+a 这种式子是经过合并同类项以后得到的结果,所以推断出使两项式×两项式.
再看最后一项是-42 ,-42是-6×7 或者6×-7也可以分解成 -21×2 或者21×-2
首先,21和2无论正负,合并后都不可能是1 只可能是-19或者19,所以排除后者.
然后,在确定是-7×6还是7×-6.
(a×-7))×(a×+6)=a²-a-42(计算过程省略,)
得到结果与原来结果不相符,原式+a 变成了-a
再算:
(a×+7)×(a×+(-6))=a²+a-42
正确,所以a²x²+ax-42就被分解成为(ax+7)×(ax-6),这就是通俗的十字相乘法分解因式.
编辑本段例题解析
例1
把2x²-7x+3分解因式.
分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分
别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.
分解二次项系数(只取正因数 因为取负因数的结果与正因数结果相同!
2=1×2=2×1;
分解常数项:
3=1×3=3×1=(-3)×(-1)=(-1)×(-3).
用画十字交叉线方法表示下列四种情况:
1 1
╳
2 3
1×3+2×1=5 ≠-7
1 3
╳
2 1
1×1+2×3=7 ≠-7
1 -1
╳
2 -3
1×(-3)+2×(-1)=-5 ≠-7
1 -3
╳
2 -1
1×(-1)+2×(-3)=-7
经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.
解 2x²-7x+3=(x-3)(2x-1)
通常地,对于二次三项式ax²+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下:
a1 c1
╳
a2 c2
a1c2+a2c1
按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax²+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即
ax^2+bx+c=(a1x+c1)(a2x+c2).
像这种借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法.
以上是说明,具体问题请具体提问.
十字相乘法能把某些二次三项式分解因式.对于形如ax²+bx+c=(a1x+c1)(a2x+c2)的整式来说,方法的关键是把二次项系数a分解成两个因数a1,a2的积a1·a2,把常数项c分解成两个因数c1,c2的积c1·c2,并使a1c2+a2c1正好是一次项的系数b,那么可以直接写成结果:ax²+bx+c=(a1x+c1)(a2x+c2).在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号.基本式子:x²+(p+q)χ+pq=(χ+p)(χ+q).
十字相乘法
编辑本段通俗方法
例:
a²x²+ax-42
首先,我们看看第一个数,是a²,代表是两个a相乘得到的,则推断出(a ×+?)×(a ×+?)
然后我们再看第二项,+a 这种式子是经过合并同类项以后得到的结果,所以推断出使两项式×两项式.
再看最后一项是-42 ,-42是-6×7 或者6×-7也可以分解成 -21×2 或者21×-2
首先,21和2无论正负,合并后都不可能是1 只可能是-19或者19,所以排除后者.
然后,在确定是-7×6还是7×-6.
(a×-7))×(a×+6)=a²-a-42(计算过程省略,)
得到结果与原来结果不相符,原式+a 变成了-a
再算:
(a×+7)×(a×+(-6))=a²+a-42
正确,所以a²x²+ax-42就被分解成为(ax+7)×(ax-6),这就是通俗的十字相乘法分解因式.
编辑本段例题解析
例1
把2x²-7x+3分解因式.
分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分
别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.
分解二次项系数(只取正因数 因为取负因数的结果与正因数结果相同!
2=1×2=2×1;
分解常数项:
3=1×3=3×1=(-3)×(-1)=(-1)×(-3).
用画十字交叉线方法表示下列四种情况:
1 1
╳
2 3
1×3+2×1=5 ≠-7
1 3
╳
2 1
1×1+2×3=7 ≠-7
1 -1
╳
2 -3
1×(-3)+2×(-1)=-5 ≠-7
1 -3
╳
2 -1
1×(-1)+2×(-3)=-7
经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.
解 2x²-7x+3=(x-3)(2x-1)
通常地,对于二次三项式ax²+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下:
a1 c1
╳
a2 c2
a1c2+a2c1
按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax²+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即
ax^2+bx+c=(a1x+c1)(a2x+c2).
像这种借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法.
以上是说明,具体问题请具体提问.
看了 如下.由整式的乘法(x+a)...的网友还看了以下:
关于齐次线性方程组的问题一个齐次线性方程组三个未知数两个等式用图像解释一下为什么一定有无穷个解.然 2020-05-21 …
已知二氯苯的同分异构体有三种,可知四氯苯的同分异构体数目是几? 2020-06-05 …
写出对联歌咏的古人的名字:江东才子多才多俊,卷土重来未可知.两表酬三顾,一对足三秋;志见出师写出对 2020-06-21 …
有甲乙丙三人,同向站立.在三人不知道的情况下,主持人给三人各戴上一顶子:红帽或白帽.三人都知道有三 2020-06-22 …
一个等腰三角形一条边长是八分之七分米另一条边的长是八分之三分米这个等腰三角形的周长是多少?根据三角 2020-07-07 …
惠崇春江晚景小聪读了这首诗后,认为诗中的两个字可以改换.竹外桃花三两枝,春江水暖鸭先知.蒌蒿满地芦 2020-07-08 …
1过一点可以画多少条直线?2过两个已知点可以画多少条直线3过三个已知点一定可以画出直线吗?为什么?4 2020-11-03 …
方程组是什么?为什么有的时候两个方程式三个未知数也可以有解例如,r=m÷(1+k).k=(3m—8) 2020-11-27 …
直角三角形求角度直角三角形三边可知,但不知道任何一个角,就想求直角三角形其他两个角角度 2020-12-25 …
脾胃状态好坏看三处可知 2021-05-30 …