早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是AD的中点,弦CE⊥AB于点F,过点D的切线交EC的延长线于点G,连接AD,分别交CF、BC于点P、Q,连接AC.给出下列结论:①∠BAD=∠ABC;②GP=GD;③

题目详情
如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是
AD
的中点,弦CE⊥AB于点F,过点D的切线交EC的延长线于点G,连接AD,分别交CF、BC于点P、Q,连接AC.给出下列结论:

①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心;④AP•AD=CQ•CB.
其中正确的是______(写出所有正确结论的序号).
▼优质解答
答案和解析
∠BAD与∠ABC不一定相等,选项①错误;
连接BD,如图所示:

∵GD为圆O的切线,
∴∠GDP=∠ABD,
又AB为圆O的直径,∴∠ADB=90°,
∵CE⊥AB,∴∠AFP=90°,
∴∠ADB=∠AFP,又∠PAF=∠BAD,
∴△APF∽△ABD,
∴∠ABD=∠APF,又∠APF=∠GPD,
∴∠GDP=∠GPD,
∴GP=GD,选项②正确;
∵直径AB⊥CE,
∴A为
CE
的中点,即
AE
=
AC

又C为
AD
的中点,∴
AC
=
CD

AE
=
CD

∴∠CAP=∠ACP,
∴AP=CP,
又AB为圆O的直径,∴∠ACQ=90°,
∴∠PCQ=∠PQC,
∴PC=PQ,
∴AP=PQ,即P为Rt△ACQ斜边AQ的中点,
∴P为Rt△ACQ的外心,选项③正确;
连接CD,如图所示:

AC
=
CD

∴∠B=∠CAD,
又∵∠ACQ=∠BCA,
∴△ACQ∽△BCA,
AC
CQ
=
CB
AC
,即AC2=CQ•CB,
AE
=
AC

∴∠ACP=∠ADC,又∠CAP=∠DAC,
∴△ACP∽△ADC,
AC
AD
=
AP
AC
,即AC2=AP•AD,
∴AP•AD=CQ•CB,选项④正确,
则正确的选项序号有②③④.
故答案为:②③④