早教吧作业答案频道 -->数学-->
高数:广义积分问题疑惑看到一个定理说fx如果有界那么假如fx从0到正无穷的积分和fx从负无穷到0的积分有一个是发散的那么fx在负无穷到正无穷上就是发散的我联想到arctgx在负无穷到正
题目详情
高数:广义积分问题疑惑
看到一个定理 说fx如果有界 那么 假如 fx从0到正无穷的积分和fx从负无穷到0的积分有一个是发散的 那么fx在负无穷到正无穷上就是发散的
我联想到arctgx在负无穷到正无穷有界 且单侧广义积分发散(从图形上判断) 但是arctgx不是奇函数吗?从负无穷到正无穷的积分不应该相消为0才对吗?或者是在R上的有界奇函数怎么满足这个结论?
看到一个定理 说fx如果有界 那么 假如 fx从0到正无穷的积分和fx从负无穷到0的积分有一个是发散的 那么fx在负无穷到正无穷上就是发散的
我联想到arctgx在负无穷到正无穷有界 且单侧广义积分发散(从图形上判断) 但是arctgx不是奇函数吗?从负无穷到正无穷的积分不应该相消为0才对吗?或者是在R上的有界奇函数怎么满足这个结论?
▼优质解答
答案和解析
奇函数在对称区间积分为0若区间是无界的,那必须满足条件在一半区间上积分有界.
原因是虽然积分区间是(-∞,﹢∞)
但是这两个无穷大代表的程度可以不一样的,即积分和求极限不一定能交换运算
即不一定有
∫ f(t)dt = lim x->﹢∞ ∫ f(t)dt
我们只能把积分拆项,然后用
lim x->﹢∞ ∫ f(t)dt - lim x->-∞ ∫ f(t)dt
只有∫ f(t)dt 和∫ f(t)dt 积分都有界才行.
在奇函数且这两个积分有界的情况下,这两个积分一样,然后抵消了
其次,lim x->﹢∞ ∫ f(t)dt 定义为柯西主值,数分中有一定讨论.
原因是虽然积分区间是(-∞,﹢∞)
但是这两个无穷大代表的程度可以不一样的,即积分和求极限不一定能交换运算
即不一定有
∫ f(t)dt = lim x->﹢∞ ∫ f(t)dt
我们只能把积分拆项,然后用
lim x->﹢∞ ∫ f(t)dt - lim x->-∞ ∫ f(t)dt
只有∫ f(t)dt 和∫ f(t)dt 积分都有界才行.
在奇函数且这两个积分有界的情况下,这两个积分一样,然后抵消了
其次,lim x->﹢∞ ∫ f(t)dt 定义为柯西主值,数分中有一定讨论.
看了 高数:广义积分问题疑惑看到一...的网友还看了以下:
高二不等式比较大小已知f(x)=(1+√(1+x))/x,a、b是两个不相等的实数,则下列不等式正 2020-04-26 …
f(x)=a^2+2ax,F(X)>=0,X属于[-1,1]求a的取值范围这题目我是会做,就是有个 2020-04-27 …
对于任意正数a,b有f(ab)=f(a)+f(b),且f(1)的导数=1 证明f(x) 在零到正无 2020-05-13 …
微积分——求积分求积分咋求啊!要求∫f(x)dx,我就会f(a)dx+f(a+dx)dx+f(a+ 2020-05-14 …
已知函数f(x)=x^3-ax (a>0),在[1,正无穷)上单调递增,求a的范围答案里说使导数大 2020-05-15 …
已知函数f(x)的定义域为(-1,1),求满足下列条件的实数a的取值范围1.f(x)在定义域内单调 2020-06-02 …
如果存在正实数a,使得f(x-a)为奇函数,f(x+a)为偶函数,我们称函数f(x)为亲和函数,则 2020-06-09 …
关于磁感应强度,下列说法正确的是A.由B=F/IL,可知B与F成正比,与IL成反比B.通电导线放在 2020-07-22 …
F与a成正比,a与m成反比,为什么一下子就得到a与(F/m)成正比? 2020-10-30 …
f(x+a)=正负f(x)分之一.的周期是啥啊! 2021-01-14 …