早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2008•山东)如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.(Ⅰ)证明:AE⊥PD;(Ⅱ)若H为PD上的动点,EH与平面PAD所成最大角的正切值为62,

题目详情
(2008•山东)如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.
(Ⅰ)证明:AE⊥PD;
(Ⅱ)若H为PD上的动点,EH与平面PAD所成最大角的正切值为
6
2
,求二面角E-AF-C的余弦值.
▼优质解答
答案和解析
证明:(Ⅰ)证明:由四边形ABCD为菱形,∠ABC=60°,可得△ABC为正三角形.
因为E为BC的中点,所以AE⊥BC.
又BC∥AD,因此AE⊥AD.
因为PA⊥平面ABCD,AE⊂平面ABCD,所以PA⊥AE.
而PA⊂平面PAD,AD⊂平面PAD且PA∩AD=A,
所以AE⊥平面PAD.又PD⊂平面PAD,
所以AE⊥PD.

(Ⅱ)设AB=2,H为PD上任意一点,连接AH,EH.
由(Ⅰ)知AE⊥平面PAD,
则∠EHA为EH与平面PAD所成的角.
在Rt△EAH中,AE=
3

所以当AH最短时,∠EHA最大,
即当AH⊥PD时,∠EHA最大.
此时tan∠EHA=
AE
AH
=
3
AH
=
6
2

因此AH=
2
.又AD=2,所以∠ADH=45°,
所以PA=2.
因为PA⊥平面ABCD,PA⊂平面PAC,
所以平面PAC⊥平面ABCD.
过E作EO⊥AC于O,则EO⊥平面PAC,
过O作OS⊥AF于S,连接ES,则∠ESO为二面角E-AF-C的平面角,
在Rt△AOE中,EO=AE•sin30°=
3
2
AO=AE•cos30°=
3
2

又F是PC的中点,在Rt△ASO中,SO=AO•sin45°=
3
2
4

SE=
EO2+SO2
=
3
4
+
作业帮用户 2017-10-07
问题解析
(1)要证明AE⊥PD,我们可能证明AE⊥面PAD,由已知易得AE⊥PA,我们只要能证明AE⊥AD即可,由于底面ABCD为菱形,故我们可以转化为证明AE⊥BC,由已知易我们不难得到结论.
(2)由EH与平面PAD所成最大角的正切值为
6
2
,我们分析后可得PA的值,由(1)的结论,我们进而可以证明平面PAC⊥平面ABCD,则过E作EO⊥AC于O,则EO⊥平面PAC,过O作OS⊥AF于S,连接ES,则∠ESO为二面角E-AF-C的平面角,然后我们解三角形ASO,即可求出二面角E-AF-C的余弦值.
名师点评
本题考点:
平面与平面之间的位置关系;空间中直线与直线之间的位置关系.
考点点评:
求二面角的大小,一般先作出二面角的平面角.此题是利用二面角的平面角的定义作出∠ESO为二面角E-AF-C的平面角,通过解∠AOC所在的三角形求得∠ESO.其解题过程为:作∠ESO→证∠ESO是二面角的平面角→计算∠ESO,简记为“作、证、算”.
我是二维码 扫描下载二维码