早教吧作业答案频道 -->数学-->
已知抛物线y=ax2(a>0),直线l1、l2都过点P(1,-2)且都与抛物线相切.(1)若l1⊥l2,求a的值.(2)直线l1、l2与分别与x轴相交于A、B两点,求△PAB面积S的取值范围.
题目详情
已知抛物线y=ax2(a>0),直线l1、l2都过点P(1,-2)且都与抛物线相切.
(1)若l1⊥l2,求a的值.
(2)直线l1、l2与分别与x轴相交于A、B两点,求△PAB面积S的取值范围.
(1)若l1⊥l2,求a的值.
(2)直线l1、l2与分别与x轴相交于A、B两点,求△PAB面积S的取值范围.
▼优质解答
答案和解析
设过P(1,-2)的直线的斜率为k;则所有过P点的直线表示为:y+2=k(x-1),即:y=kx-k-2;
因为直线与抛物线相切;连列方程组:得ax^2-kx+k+2=0;
因为相切:所以判别式△=k^2-4a(k+2)=0;即:k^2-4ak-8a=0;
因为存在两条切线,所以k^2-4ak-8a=0应该有两个不同的实根;k1,k2;
又因为两切线垂直,所以k1*k2=-1;所以-8a=-1,得:a=1/8;
(2)两条切线分别为:y=k1x-k1-2 ,y=k2x-k2-2;
分别与X轴的交点为:A(1+2/k1,0),B(1+2/k2,0);
则AB=|(1+2/k1)-(1+2/k2)|=|2/k1-2/k2|=2|k1-k2|/|k1*k2|
|k1*k2|=|-8a|=8a
|k1-k2|=√[(k1+k2)^2-4k1k2]=√[(4a)^2+4*8a]=√(16a^2+32a)=4√(a^2+2a)
所以AB=8√(a^2+2a)/8a=√(1+2/a);P到AB的距离为:2;
所以S△PAB=1/2*2*√(1+2/a)=√(1+2/a);
因为直线与抛物线相切;连列方程组:得ax^2-kx+k+2=0;
因为相切:所以判别式△=k^2-4a(k+2)=0;即:k^2-4ak-8a=0;
因为存在两条切线,所以k^2-4ak-8a=0应该有两个不同的实根;k1,k2;
又因为两切线垂直,所以k1*k2=-1;所以-8a=-1,得:a=1/8;
(2)两条切线分别为:y=k1x-k1-2 ,y=k2x-k2-2;
分别与X轴的交点为:A(1+2/k1,0),B(1+2/k2,0);
则AB=|(1+2/k1)-(1+2/k2)|=|2/k1-2/k2|=2|k1-k2|/|k1*k2|
|k1*k2|=|-8a|=8a
|k1-k2|=√[(k1+k2)^2-4k1k2]=√[(4a)^2+4*8a]=√(16a^2+32a)=4√(a^2+2a)
所以AB=8√(a^2+2a)/8a=√(1+2/a);P到AB的距离为:2;
所以S△PAB=1/2*2*√(1+2/a)=√(1+2/a);
看了 已知抛物线y=ax2(a>0...的网友还看了以下:
如图,B(6,0)E(0,6),直线Y=3X+3与X轴,Y轴分别交于A,C,点P为直线BE上一点, 2020-05-16 …
如图,已知一次函数y=kx+b(k≠0)的图象与x轴,y轴分别交于A、B两点,且与反比例函数y=m 2020-05-17 …
1.已知二分之x=三分之y等于四分之z,且x+y+z=1,求x,y,z的值2.|2x+y-4|与( 2020-05-23 …
设在同一平面上的动点P、Q的坐标分别是(x,y)、(x’、y'),且满足关系:x‘=x+2y-1设 2020-06-14 …
平面直角坐标系中,直线L1:Y=-二分之一X+6分别与X轴、Y轴交于点B、C,且与L2:Y=二分之 2020-06-27 …
已知函数y=y¹-y².求y与x之间的函数关系式已知函数y=y¹-y²,且y¹与x²分子一成反比例 2020-07-18 …
已知函数y=kx+4(k≠0)的图像经过(1,6),且与x轴,y轴分别交于A,B两点.(1)、求已 2020-07-26 …
求满足下列条件的平面方程:(1)过点p(1,1,1)且与平面3x-y+2z-1=0平行(3)与x轴、 2020-10-30 …
在平面直角坐标系中,直线L1与x轴、y轴分别交于C、D两点,且直线上所有点的坐标(x,y)均是二元一 2020-11-01 …
已知函数Y=X+3与Y轴分别交与A,B两点直线L过原点且与线段AB交与点C并把三角形AOB的面积分为 2021-01-10 …