早教吧作业答案频道 -->数学-->
设M,N为抛物线C:y=x2上的两个动点,过M,N分别作抛物线C的切线l1,l2,与x轴分别交于A,B两点,且l1∩l2=P,若|AB|=1,(1)若|AB|=1,求点P的轨迹方程(2)当A,B所在直线满足什么条件时,P
题目详情
设M,N为抛物线C:y=x2上的两个动点,过M,N分别作抛物线C的切线l1,l2,与x轴分别交于A,B两点,且l1∩l2=P,若|AB|=1,
(1)若|AB|=1,求点P的轨迹方程
(2)当A,B所在直线满足什么条件时,P的轨迹为一条直线?(请千万不要证明你的结论)
(3)在满足(1)的条件下,求证:△MNP的面积为一个定值,并求出这个定值.
(1)若|AB|=1,求点P的轨迹方程
(2)当A,B所在直线满足什么条件时,P的轨迹为一条直线?(请千万不要证明你的结论)
(3)在满足(1)的条件下,求证:△MNP的面积为一个定值,并求出这个定值.
▼优质解答
答案和解析
(1)设P(x,y),M(x1,x12),N(x2,x22),切线的斜率 k=2x.
∴l1 的方程为 y-x12=2x1(x-x1),即 y=2x1x-x12 ①,
同理,l2 的方程为 y=2x2 x-x22 ②,令 y=0 可求出 A(
,0),B(
,0).
∵|AB|=1,所以,|x1-x2|=2,∴|x1+x2|2-4x1x2 =4,
由①,②,得 x=
,y=x1x2,故点P(
,x1x2).
∴y=x2-1,
(2)当 A,B 所在直线过 C:y=x2 的焦点.
(3)设 MN:y=kx+b 又由 y=x2 得 x2-kx-b=0,所以,x1+x2=k,x1x2=-b,
∴P到MN的距离为 d=
=,MN=
|x1-x2|,
∴S=
MN•d=
(|x1+x2|2 -4x1x2|)•|x1-x2|=2,为定值.
∴l1 的方程为 y-x12=2x1(x-x1),即 y=2x1x-x12 ①,
同理,l2 的方程为 y=2x2 x-x22 ②,令 y=0 可求出 A(
x1 |
2 |
x2 |
2 |
∵|AB|=1,所以,|x1-x2|=2,∴|x1+x2|2-4x1x2 =4,
由①,②,得 x=
x1+x2 |
2 |
x1+x2 |
2 |
∴y=x2-1,
(2)当 A,B 所在直线过 C:y=x2 的焦点.
(3)设 MN:y=kx+b 又由 y=x2 得 x2-kx-b=0,所以,x1+x2=k,x1x2=-b,
∴P到MN的距离为 d=
|k
| ||
|
1+K2 |
∴S=
1 |
2 |
1 |
4 |
看了 设M,N为抛物线C:y=x2...的网友还看了以下:
保险需求的费率弹性的绝对值大于l时,保费收入与保险需求的关系是( )。 2020-05-22 …
求教大学物理题!一带电圆柱面半径为R,长为L,沿轴向单位长度带电量为X,在圆柱面外有一点P,距圆柱 2020-07-05 …
已知过点A(-4,0)的动直线l与抛物线C:x^2=2py(p>0)相交于B,C两点.当l的斜率是 2020-07-21 …
已知过点A(-4,0)的动直线L与抛物线C:X平方=2PY(p>0)相交于B.C两点.当L得斜率是 2020-07-21 …
已知A、B为椭圆(x^2)/4+(y^2)/3=1的左右两个顶点,F为椭圆饿右焦点,P为椭圆上异于 2020-07-24 …
在光滑的水平轨道上有两个半径都是r的小球A和B,质量分别为m和2m,当两球心间的距离大于L(L比2r 2020-11-10 …
如图所示为a、b两小球沿光滑水平面相向运动的v-t图.已知当两小球间距小于或等于L时,受到相互排斥的 2020-11-25 …
按国际惯例,当居民消费价格指数(CPI)增幅连续超过3%时,即意味着有通货膨胀风险;CPl低于l%时 2020-11-27 …
二次函数高手入!NO.1抛物线y=ax^2+bx+c当c大于0时,抛物线交y轴正半轴,c小于0时,抛 2020-12-08 …
二次函数的性质当a大于0时,抛物线在对称轴左侧,函数的值随自变量的值的变大而减小,当()时,取得最小 2020-12-08 …