早教吧作业答案频道 -->数学-->
有关圆的规律求所有初中阶段关于圆的规律,包括园内接四边形等等,越多越好,
题目详情
有关圆的规律
求所有初中阶段关于圆的规律,包括园内接四边形等等,越多越好,
求所有初中阶段关于圆的规律,包括园内接四边形等等,越多越好,
▼优质解答
答案和解析
〖圆的定义〗
几何说:平面上到定点的距离等于定长的所有点组成的图形叫做圆.定点称为圆心,定长称为半径.
轨迹说:平面上一动点以一定点为中心,一定长为距离运动一周的轨迹称为圆周,简称圆.
集合说:到定点的距离等于定长的点的集合叫做圆.
〖圆的相关量〗
圆周率:圆周长度与圆的直径长度的比叫做圆周率,值是3.14159265358979323846…,通常用π表示,计算中常取3.1416为它的近似值.
圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧.大于半圆的弧称为优弧,小于半圆的弧称为劣弧.连接圆上任意两点的线段叫做弦.经过圆心的弦叫做直径.
圆心角和圆周角:顶点在圆心上的角叫做圆心角.顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角.
内心和外心:过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心.和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心.
扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形.圆锥侧面展开图是一个扇形.这个扇形的半径成为圆锥的母线.
〖圆和圆的相关量字母表示方法〗
圆—⊙ 半径—r 弧—⌒ 直径—d
扇形弧长/圆锥母线—l 周长—C 面积—S
〖圆和其他图形的位置关系〗
圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO<r.
直线与圆有3种位置关系:无公共点为相离;有两个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点.以直线AB与圆O为例(设OP⊥AB于P,则PO是AB到圆心的距离):AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO<r.
两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有两个公共点的叫相交.两圆圆心之间的距离叫做圆心距.两圆的半径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R-r<P<R+r;内切P=R-r;内含P<R-r.
【圆的平面几何性质和定理】
〖有关圆的基本性质与定理〗
圆的确定:不在同一直线上的三个点确定一个圆.
圆的对称性质:圆是轴对称图形,其对称轴是任意一条过圆心的直线.圆也是中心对称图形,其对称中心是圆心.
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.
〖有关圆周角和圆心角的性质和定理〗
在同圆或等圆中,如果两个圆心角,两个圆周角,两条弧,两条弦中有一组量相等,那么他们所对应的其余各组量都分别相等.
一条弧所对的圆周角等于它所对的圆心角的一半.
直径所对的圆周角是直角.90度的圆周角所对的弦是直径.
〖有关外接圆和内切圆的性质和定理〗
一个三角形有唯一确定的外接圆和内切圆.外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等.
〖有关切线的性质和定理〗
圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线.
切线判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线.
切线的性质:(1)经过切点垂直于这条半径的直线是圆的切线.(2)经过切点垂直于切线的直线必经过圆心.(3)圆的切线垂直于经过切点的半径.
切线的长定理:从圆外一点到圆的两条切线的长相等.
〖有关圆的计算公式〗
1.圆的周长C=2πr=πd 2.圆的面积S=πr?3.扇形弧长l=nπr/180
4.扇形面积S=nπr?/360=rl/2 5.圆锥侧面积S=πrl
几何说:平面上到定点的距离等于定长的所有点组成的图形叫做圆.定点称为圆心,定长称为半径.
轨迹说:平面上一动点以一定点为中心,一定长为距离运动一周的轨迹称为圆周,简称圆.
集合说:到定点的距离等于定长的点的集合叫做圆.
〖圆的相关量〗
圆周率:圆周长度与圆的直径长度的比叫做圆周率,值是3.14159265358979323846…,通常用π表示,计算中常取3.1416为它的近似值.
圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧.大于半圆的弧称为优弧,小于半圆的弧称为劣弧.连接圆上任意两点的线段叫做弦.经过圆心的弦叫做直径.
圆心角和圆周角:顶点在圆心上的角叫做圆心角.顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角.
内心和外心:过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心.和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心.
扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形.圆锥侧面展开图是一个扇形.这个扇形的半径成为圆锥的母线.
〖圆和圆的相关量字母表示方法〗
圆—⊙ 半径—r 弧—⌒ 直径—d
扇形弧长/圆锥母线—l 周长—C 面积—S
〖圆和其他图形的位置关系〗
圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO<r.
直线与圆有3种位置关系:无公共点为相离;有两个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点.以直线AB与圆O为例(设OP⊥AB于P,则PO是AB到圆心的距离):AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO<r.
两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有两个公共点的叫相交.两圆圆心之间的距离叫做圆心距.两圆的半径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R-r<P<R+r;内切P=R-r;内含P<R-r.
【圆的平面几何性质和定理】
〖有关圆的基本性质与定理〗
圆的确定:不在同一直线上的三个点确定一个圆.
圆的对称性质:圆是轴对称图形,其对称轴是任意一条过圆心的直线.圆也是中心对称图形,其对称中心是圆心.
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.
〖有关圆周角和圆心角的性质和定理〗
在同圆或等圆中,如果两个圆心角,两个圆周角,两条弧,两条弦中有一组量相等,那么他们所对应的其余各组量都分别相等.
一条弧所对的圆周角等于它所对的圆心角的一半.
直径所对的圆周角是直角.90度的圆周角所对的弦是直径.
〖有关外接圆和内切圆的性质和定理〗
一个三角形有唯一确定的外接圆和内切圆.外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等.
〖有关切线的性质和定理〗
圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线.
切线判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线.
切线的性质:(1)经过切点垂直于这条半径的直线是圆的切线.(2)经过切点垂直于切线的直线必经过圆心.(3)圆的切线垂直于经过切点的半径.
切线的长定理:从圆外一点到圆的两条切线的长相等.
〖有关圆的计算公式〗
1.圆的周长C=2πr=πd 2.圆的面积S=πr?3.扇形弧长l=nπr/180
4.扇形面积S=nπr?/360=rl/2 5.圆锥侧面积S=πrl
看了 有关圆的规律求所有初中阶段关...的网友还看了以下:
贵州 湖北 辽宁 江西 陕西的所在地形区!所处阶梯 简称 是地形区所在地形区说清楚一点 2020-05-17 …
2.一个多边形截去一个角后所形成的多边形的内角和是1260°,那么原多边形的边数不可能是A.8B. 2020-05-20 …
我国现阶段全民所有制采取( )A.部门所有制形式B.集体所有制形式C.国家所有制形式D.行业所有制 2020-06-05 …
所有的正N边形都相似这个说法对吗?正N边形=正多边形这说明:所有的正N边形都相似;所有的正多边形都 2020-06-16 …
一位油漆匠站在梯子的某一阶上,他看出在他所站阶下面的阶数是上面阶数的两倍.当他下降4阶后,在他所站 2020-06-17 …
多阶等差数列前n项和的推导其中一阶就是等差,二阶每一项的差成等差,三阶是每一项差的差成等差以此类推 2020-07-20 …
因为所有边长都相等的凸多边形是正多边形,(大前提)而菱形是所有边长都相等的凸多边形,(小前提)所以 2020-08-02 …
目前我国处在社会主义初级阶段,所有制形式和分配方式是多种多样的。私营企业中的工人获得的工资收入属于[ 2020-12-01 …
瓦肆又称瓦舍、瓦子,是随着宋代市民阶层的形成而兴起的一种娱乐和商业集散场所。这表明()A.商业活动不 2020-12-04 …
公有制为主体,多种所有制经济共同发展是我国社会主义初级阶段的一项基本经济制度。我们之所以要坚持公有制 2021-01-15 …