早教吧作业答案频道 -->其他-->
在三棱锥P-ABC中,给出下列四个命题:①如果PA⊥BC,PB⊥AC,那么点P在平面ABC内的射影是△ABC的垂心;②如果点P到△ABC的三边所在直线的距离都相等,那么点P在平面ABC内的射影是△ABC的内心
题目详情
在三棱锥P-ABC中,给出下列四个命题:
①如果PA⊥BC,PB⊥AC,那么点P在平面ABC内的射影是△ABC的垂心;
②如果点P到△ABC的三边所在直线的距离都相等,那么点P在平面ABC内的射影是△ABC的内心;
③如果棱PA和BC所成的角为60?,PA=BC=2,E、F分别是棱PB、AC的中点,那么EF=1;
④三棱锥P-ABC的各棱长均为1,则该三棱锥在任意一个平面内的射影的面积都不大于
;
⑤如果三棱锥P-ABC的四个顶点是半径为1的球的内接正四面体的顶点,则P与A两点间的球面距离为π-arccos
.
其中正确命题的序号是______.
①如果PA⊥BC,PB⊥AC,那么点P在平面ABC内的射影是△ABC的垂心;
②如果点P到△ABC的三边所在直线的距离都相等,那么点P在平面ABC内的射影是△ABC的内心;
③如果棱PA和BC所成的角为60?,PA=BC=2,E、F分别是棱PB、AC的中点,那么EF=1;
④三棱锥P-ABC的各棱长均为1,则该三棱锥在任意一个平面内的射影的面积都不大于
1 |
2 |
⑤如果三棱锥P-ABC的四个顶点是半径为1的球的内接正四面体的顶点,则P与A两点间的球面距离为π-arccos
1 |
3 |
其中正确命题的序号是______.
▼优质解答
答案和解析
①若PA⊥BC,PB⊥AC,因为PH⊥底面ABC,所以AH⊥BC,同理BH⊥AC,可得H是△ABC的垂心,正确.
②若PA=PB=PC,易得AH=BH=CH,则H是△ABC的外心,不正确.
③如果棱PA和BC所成的角为60°,PA=BC=2,E、F分别是棱PB、AC的中点,那么EF=1或
;不正确.
④如果三棱锥P-ABC的各条棱长均为1,则该三棱锥在任意一个平面内的射影的面积都不大于
,正确.
⑤如果三棱锥P-ABC的四个顶点是半径为1的球的内接正四面体的顶点,则P与A两点间的球面距离为π-arccos
,正确.
故答案为:①④⑤.

②若PA=PB=PC,易得AH=BH=CH,则H是△ABC的外心,不正确.
③如果棱PA和BC所成的角为60°,PA=BC=2,E、F分别是棱PB、AC的中点,那么EF=1或
3 |
④如果三棱锥P-ABC的各条棱长均为1,则该三棱锥在任意一个平面内的射影的面积都不大于
1 |
2 |
⑤如果三棱锥P-ABC的四个顶点是半径为1的球的内接正四面体的顶点,则P与A两点间的球面距离为π-arccos
1 |
3 |
故答案为:①④⑤.
看了 在三棱锥P-ABC中,给出下...的网友还看了以下:
C-C与C=C是键长相等还是不等哈,键长等不等能证明什么吗 比如说为什么甲烷的四个碳氢键的键长相等 2020-05-16 …
下列命题错误的是()A.平行四边形的对边相等B.两组对边分别相等的四边形是平行四边形C.对角线相等 2020-05-23 …
下列命题中正确的是A:对角线相等的平行四边形是矩形B:对角线相等的四边形是平行四边形C:对角线相等 2020-06-04 …
什么是对等四边形 2020-06-13 …
给出四个命题:①各侧面都是全等四边形的棱柱一定是正棱柱;②对角面是全等矩形的六面体一定是长方体;③ 2020-06-27 …
(2004•四川)下列说法中,错误的是()A.一组对边平行且相等的四边形是平行四边形B.两条对角线 2020-07-06 …
给出下列四个命题:①各侧面都是全等四边形的棱柱一定是正棱柱;②对角面是全等矩形的六面体一定是长方体 2020-07-31 …
数学关于平行四边形的判读下列说法正确的是A.一组对边相等的四边形是平行四边形B.一组对边平行,另一组 2020-12-04 …
在空间,下列命题正确的个数是.(1)有两组对边相等的四边形是平行四边形(2)四边相等的四边形是在空间 2020-12-25 …
下列5个命题:①四边相等的四边形是菱形;②两组对边相等的四边形是平行四边形;③空间四边形的内角和一定 2021-02-01 …